Differences in nanoscale organization of regulatory active and inactive human chromatin.
Autor: | Brandstetter K; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany., Zülske T; Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany., Ragoczy T; Altius Institute for Biomedical Sciences, Seattle, Washington., Hörl D; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany., Guirao-Ortiz M; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany., Steinek C; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany., Barnes T; Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany., Stumberger G; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany., Schwach J; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany., Haugen E; Altius Institute for Biomedical Sciences, Seattle, Washington., Rynes E; Altius Institute for Biomedical Sciences, Seattle, Washington., Korber P; Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany., Stamatoyannopoulos JA; Altius Institute for Biomedical Sciences, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington., Leonhardt H; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany., Wedemann G; Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany. Electronic address: gero.wedemann@hochschule-stralsund.de., Harz H; Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany. Electronic address: harz@biologie.uni-muenchen.de. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biophysical journal [Biophys J] 2022 Mar 15; Vol. 121 (6), pp. 977-990. Date of Electronic Publication: 2022 Feb 10. |
DOI: | 10.1016/j.bpj.2022.02.009 |
Abstrakt: | Methodological advances in conformation capture techniques have fundamentally changed our understanding of chromatin architecture. However, the nanoscale organization of chromatin and its cell-to-cell variance are less studied. Analyzing genome-wide data from 733 human cell and tissue samples, we identified 2 prototypical regions that exhibit high or absent hypersensitivity to deoxyribonuclease I, respectively. These regulatory active or inactive regions were examined in the lymphoblast cell line K562 by using high-throughput super-resolution microscopy. In both regions, we systematically measured the physical distance of 2 fluorescence in situ hybridization spots spaced by only 5 kb of DNA. Unexpectedly, the resulting distance distributions range from very compact to almost elongated configurations of more than 200-nm length for both the active and inactive regions. Monte Carlo simulations of a coarse-grained model of these chromatin regions based on published data of nucleosome occupancy in K562 cells were performed to understand the underlying mechanisms. There was no parameter set for the simulation model that can explain the microscopically measured distance distributions. Obviously, the chromatin state given by the strength of internucleosomal interaction, nucleosome occupancy, or amount of histone H1 differs from cell to cell, which results in the observed broad distance distributions. This large variability was not expected, especially in inactive regions. The results for the mechanisms for different distance distributions on this scale are important for understanding the contacts that mediate gene regulation. Microscopic measurements show that the inactive region investigated here is expected to be embedded in a more compact chromatin environment. The simulation results of this region require an increase in the strength of internucleosomal interactions. It may be speculated that the higher density of chromatin is caused by the increased internucleosomal interaction strength. (Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |