Classification of De novo post-operative and persistent atrial fibrillation using multi-channel ECG recordings.
Autor: | Moghaddasi H; Circuits and Systems, Delft University of Technology, Delft, the Netherlands. Electronic address: H.moghaddasi@tudelft.nl., Hendriks RC; Circuits and Systems, Delft University of Technology, Delft, the Netherlands., van der Veen AJ; Circuits and Systems, Delft University of Technology, Delft, the Netherlands., de Groot NMS; Circuits and Systems, Delft University of Technology, Delft, the Netherlands; Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands., Hunyadi B; Circuits and Systems, Delft University of Technology, Delft, the Netherlands. |
---|---|
Jazyk: | angličtina |
Zdroj: | Computers in biology and medicine [Comput Biol Med] 2022 Apr; Vol. 143, pp. 105270. Date of Electronic Publication: 2022 Feb 01. |
DOI: | 10.1016/j.compbiomed.2022.105270 |
Abstrakt: | Atrial fibrillation (AF) is the most sustained arrhythmia in the heart and also the most common complication developed after cardiac surgery. Due to its progressive nature, timely detection of AF is important. Currently, physicians use a surface electrocardiogram (ECG) for AF diagnosis. However, when the patient develops AF, its various development stages are not distinguishable for cardiologists based on visual inspection of the surface ECG signals. Therefore, severity detection of AF could start from differentiating between short-lasting AF and long-lasting AF. Here, de novo post-operative AF (POAF) is a good model for short-lasting AF while long-lasting AF can be represented by persistent AF. Therefore, we address in this paper a binary severity detection of AF for two specific types of AF. We focus on the differentiation of these two types as de novo POAF is the first time that a patient develops AF. Hence, comparing its development to a more severe stage of AF (e.g., persistent AF) could be beneficial in unveiling the electrical changes in the atrium. To the best of our knowledge, this is the first paper that aims to differentiate these different AF stages. We propose a method that consists of three sets of discriminative features based on fundamentally different aspects of the multi-channel ECG data, namely based on the analysis of RR intervals, a greyscale image representation of the vectorcardiogram, and the frequency domain representation of the ECG. Due to the nature of AF, these features are able to capture both morphological and rhythmic changes in the ECGs. Our classification system consists of a random forest classifier, after a feature selection stage using the ReliefF method. The detection efficiency is tested on 151 patients using 5-fold cross-validation. We achieved 89.07% accuracy in the classification of de novo POAF and persistent AF. The results show that the features are discriminative to reveal the severity of AF. Moreover, inspection of the most important features sheds light on the different characteristics of de novo post-operative and persistent AF. (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |