Isolation and characterization of Streptomyces bacteriophages and Streptomyces strains encoding biosynthetic arsenals.
Autor: | Montaño ET; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Nideffer JF; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Brumage L; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Erb M; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Busch J; Department of Immunology, Duke University, Durham, North Carolina, United Stated of America., Fernandez L; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Derman AI; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Davis JP; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Estrada E; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Fu S; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Le D; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Vuppala A; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Tran C; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Luterstein E; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Lakkaraju S; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Panchagnula S; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Ren C; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Doan J; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Tran S; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Soriano J; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Fujita Y; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Gutala P; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Fujii Q; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Lee M; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Bui A; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Villarreal C; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Shing SR; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Kim S; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Freeman D; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Racha V; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Ho A; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Kumar P; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Falah K; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Dawson T; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Enustun E; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Prichard A; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Gomez A; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Khanna K; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Trigg S; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Pogliano K; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America., Pogliano J; Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America. |
---|---|
Jazyk: | angličtina |
Zdroj: | PloS one [PLoS One] 2022 Jan 21; Vol. 17 (1), pp. e0262354. Date of Electronic Publication: 2022 Jan 21 (Print Publication: 2022). |
DOI: | 10.1371/journal.pone.0262354 |
Abstrakt: | The threat to public health posed by drug-resistant bacteria is rapidly increasing, as some of healthcare's most potent antibiotics are becoming obsolete. Approximately two-thirds of the world's antibiotics are derived from natural products produced by Streptomyces encoded biosynthetic gene clusters. Thus, to identify novel gene clusters, we sequenced the genomes of four bioactive Streptomyces strains isolated from the soil in San Diego County and used Bacterial Cytological Profiling adapted for agar plate culturing in order to examine the mechanisms of bacterial inhibition exhibited by these strains. In the four strains, we identified 104 biosynthetic gene clusters. Some of these clusters were predicted to produce previously studied antibiotics; however, the known mechanisms of these molecules could not fully account for the antibacterial activity exhibited by the strains, suggesting that novel clusters might encode antibiotics. When assessed for their ability to inhibit the growth of clinically isolated pathogens, three Streptomyces strains demonstrated activity against methicillin-resistant Staphylococcus aureus. Additionally, due to the utility of bacteriophages for genetically manipulating bacterial strains via transduction, we also isolated four new phages (BartholomewSD, IceWarrior, Shawty, and TrvxScott) against S. platensis. A genomic analysis of our phages revealed nearly 200 uncharacterized proteins, including a new site-specific serine integrase that could prove to be a useful genetic tool. Sequence analysis of the Streptomyces strains identified CRISPR-Cas systems and specific spacer sequences that allowed us to predict phage host ranges. Ultimately, this study identified Streptomyces strains with the potential to produce novel chemical matter as well as integrase-encoding phages that could potentially be used to manipulate these strains. Competing Interests: The authors declare no competing interests exist. KP and JP have an equity interest in Linnaeus Bioscience Incorporated, and receive consulting income from the company. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |