Curauá-derived carbon dots: Fluorescent probes for effective Fe(III) ion detection, cellular labeling and bioimaging.
Autor: | Raja S; National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos, SP 13560-970, Brazil; Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Helmholtz Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany. Electronic address: sebastianrajaorg@gmail.com., Buhl EM; Institute for Pathology, Electron Microscopy Facility, RWTH Aachen University, Pauwelsstrasse, 30, D-52074 Aachen, Germany., Dreschers S; Department of Pediatrics, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany., Schalla C; Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Helmholtz Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany., Zenke M; Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Helmholtz Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany., Sechi A; Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Helmholtz Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany., Mattoso LHC; National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos, SP 13560-970, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | Materials science & engineering. C, Materials for biological applications [Mater Sci Eng C Mater Biol Appl] 2021 Oct; Vol. 129, pp. 112409. Date of Electronic Publication: 2021 Sep 02. |
DOI: | 10.1016/j.msec.2021.112409 |
Abstrakt: | This study reports the generation of curauá-derived carbon dots (C-dots) and their suitability for Fe(III) detection, bioimaging and FACS analysis. C-dots were generated from curauá (Ananas erectifolius) fibers by a facile one-step hydrothermal approach. They exhibited graphite-like structure with a mean diameter of 2.4 nm, high water solubility, high levels of carboxyl and hydroxyl functional groups, excitation-dependent multicolor fluorescence emission (in the range 450 nm - 560 nm) and superior photostability. C-dots were highly selective and effective for the detection of ferric Fe(III) ion in an aqueous medium with a detection limit of 0.77 μM in the linear range of 0-30 μM, a value much lower than the guideline limits proposed by the World Health Organization (WHO). In biological cell systems, C-dots were very well tolerated by B16F1 mouse melanoma and J774.A1 mouse macrophages cell lines, both of which effectively internalized C-dots in their cytoplasmic compartment. Finally, C-dots were effective probes for long-term live cell imaging experiments and multi-channel flow cytometry analysis. Collectively, our findings demonstrate that curauá-derived C-dots serve as versatile and effective natural products for Fe(III) ion sensing, labeling and bioimaging of various cell types. This study adds novel C-dots to the library of carbon-based probes and paves the way towards a sustainable conversion of a most abundant biomass waste into value-added products. (Copyright © 2021 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |