Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere.

Autor: Hoke AK; James Madison University, Harrisonburg, VA, United States of America., Reynoso G; James Madison University, Harrisonburg, VA, United States of America.; Virginia Tech, Blacksburg, VA, United States of America., Smith MR; James Madison University, Harrisonburg, VA, United States of America.; Texas A&M University, College Station, TX, United States of America., Gardner MI; James Madison University, Harrisonburg, VA, United States of America., Lockwood DJ; James Madison University, Harrisonburg, VA, United States of America., Gilbert NE; James Madison University, Harrisonburg, VA, United States of America.; University of Tennessee, Knoxville, TN, United States of America., Wilhelm SW; University of Tennessee, Knoxville, TN, United States of America., Becker IR; James Madison University, Harrisonburg, VA, United States of America., Brennan GJ; James Madison University, Harrisonburg, VA, United States of America., Crider KE; James Madison University, Harrisonburg, VA, United States of America., Farnan SR; James Madison University, Harrisonburg, VA, United States of America., Mendoza V; James Madison University, Harrisonburg, VA, United States of America., Poole AC; James Madison University, Harrisonburg, VA, United States of America., Zimmerman ZP; James Madison University, Harrisonburg, VA, United States of America., Utz LK; James Madison University, Harrisonburg, VA, United States of America., Wurch LL; James Madison University, Harrisonburg, VA, United States of America., Steffen MM; James Madison University, Harrisonburg, VA, United States of America.
Jazyk: angličtina
Zdroj: PloS one [PLoS One] 2021 Sep 22; Vol. 16 (9), pp. e0257017. Date of Electronic Publication: 2021 Sep 22 (Print Publication: 2021).
DOI: 10.1371/journal.pone.0257017
Abstrakt: Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.
Competing Interests: The authors have declared that no competing interests exist.
Databáze: MEDLINE