Fabrication of Multilayered Composite Nanofibers Using Continuous Chaotic Printing and Electrospinning: Chaotic Electrospinning.

Autor: Holmberg S; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Garza-Flores NA; Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Almajhadi MA; Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California 92697, United States., Chávez-Madero C; Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Lujambio-Angeles A; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Jind B; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Bautista-Flores C; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Mendoza-Buenrostro C; Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Pérez-Carrillo E; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.; Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Wickramasinghe HK; Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California 92697, United States., Martínez-Chapa SO; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Madou M; Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92697, United States., Weiss PS; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.; Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States.; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, United States., Álvarez MM; Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.; Departmento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico., Trujillo-de Santiago G; Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.; Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.
Jazyk: angličtina
Zdroj: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2021 Aug 11; Vol. 13 (31), pp. 37455-37465. Date of Electronic Publication: 2021 Aug 02.
DOI: 10.1021/acsami.1c05429
Abstrakt: Multi-material and multilayered micro- and nanostructures are prominently featured in nature and engineering and are recognized by their remarkable properties. Unfortunately, the fabrication of micro- and nanostructured materials through conventional processes is challenging and costly. Herein, we introduce a high-throughput, continuous, and versatile strategy for the fabrication of polymer fibers with complex multilayered nanostructures. Chaotic electrospinning (ChE) is based on the coupling of continuous chaotic printing (CCP) and electrospinning, which produces fibers with an internal multi-material microstructure. When a CCP printhead is used as an electrospinning nozzle, the diameter of the fibers is further scaled down by 3 orders of magnitude while preserving their internal structure. ChE enables the use of various polymer inks for the creation of nanofibers with a customizable number of internal nanolayers. Our results showcase the versatility and tunability of ChE to fabricate multilayered structures at the nanoscale at high throughput. We apply ChE to the synthesis of unique carbon textile electrodes composed of nanofibers with striations carved into their surface at regular intervals. These striated carbon electrodes with high surface areas exhibit 3- to 4-fold increases in specific capacitance compared to regular carbon nanofibers; ChE holds great promise for the cost-effective fabrication of electrodes for supercapacitors and other applications.
Databáze: MEDLINE