Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO 2 Thin Films.

Autor: Jiménez-Cavero P; Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain., Lucas I; Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain., Ara-Arteaga J; Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain., Ibarra MR; Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.; Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain., Algarabel PA; Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain., Morellón L; Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Jazyk: angličtina
Zdroj: Nanomaterials (Basel, Switzerland) [Nanomaterials (Basel)] 2021 Jun 02; Vol. 11 (6). Date of Electronic Publication: 2021 Jun 02.
DOI: 10.3390/nano11061478
Abstrakt: Spin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the thickness dependence of the ISHE in iridium oxide (IrO2) thin films, producing spin currents by means of the spin Seebeck effect in γ-Fe2O3/IrO2 bilayers prepared by pulsed laser deposition (PLD). The observed ISHE charge current density, which features a maximum as a consequence of the spin diffusion length scale, follows the typical behaviour of spin-Hall-related phenomena. By fitting to the theory developed by Castel et al., we find that the spin Hall angle θSH scales proportionally to the thin film resistivity, θSH∝ρc, and obtains a value for the spin diffusion length λIrO2 of λIrO2=3.3(7) nm. In addition, we observe a negative θSH for every studied thickness and temperature, unlike previously reported works, which brings the possibility of tuning the desired functionality of high-resistance spin-Hall-based devices. We attribute this behaviour to the textured growth of the sample in the context of a highly anisotropic value of the spin Hall conductivity in this material.
Databáze: MEDLINE