XUV pump-XUV probe transient absorption spectroscopy at FELs.

Autor: Ding T; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Rebholz M; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Aufleger L; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Hartmann M; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Stooß V; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Magunia A; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Birk P; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Borisova GD; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., da Costa Castanheira C; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Rupprecht P; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Mi Y; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Gaumnitz T; Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland., Loh ZH; Division of Chemistry and Biological Chemistry, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore., Roling S; Physikalisches Institut der Westfälischen Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany., Butz M; Center for Soft Nanoscience, Busso-Peuss-Straße 10, 48149 Münster, Germany., Zacharias H; Center for Soft Nanoscience, Busso-Peuss-Straße 10, 48149 Münster, Germany., Düsterer S; Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany., Treusch R; Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany., Ott C; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de., Pfeifer T; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. christian.ott@mpi-hd.mpg.de thomas.pfeifer@mpi-hd.mpg.de.
Jazyk: angličtina
Zdroj: Faraday discussions [Faraday Discuss] 2021 May 27; Vol. 228 (0), pp. 519-536.
DOI: 10.1039/d0fd00107d
Abstrakt: The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV. We demonstrate the feasibility of this setup firstly on a neon target. Here, we intensity- and time-resolve key aspects of non-linear XUV-FEL light-matter interactions, namely the non-resonant ionization dynamics and resonant coupling dynamics of bound states, including XUV-induced Stark shifts of energy levels. Secondly, we show that this setup is capable of tracking the XUV-initiated dissociation dynamics of small molecular targets (oxygen and diiodomethane) with site-specific resolution, by measuring the XUV transient absorption spectrum. In general, benefitting from a single-shot detection capability, we show that the setup and method provides single-shot phase-locked XUV pulse pairs. This lays the foundation to perform, in the future, experiments as a function of the XUV interferometric time delay and the relative phase, which enables advanced coherent non-linear spectroscopy schemes in the XUV and X-ray spectral range.
Databáze: MEDLINE