Enhanced production of taxadiene in Saccharomyces cerevisiae.

Autor: Nowrouzi B; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.; Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom., Li RA; DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Walls LE; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.; Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom., d'Espaux L; DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Malcı K; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.; Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom., Liang L; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.; Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom., Jonguitud-Borrego N; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.; Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom., Lerma-Escalera AI; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apodaca, Mexico., Morones-Ramirez JR; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apodaca, Mexico., Keasling JD; DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.; Center for Biosustainability, Danish Technical University, Lyngby, Denmark.; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China., Rios-Solis L; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom. Leo.Rios@ed.ac.uk.; Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom. Leo.Rios@ed.ac.uk.
Jazyk: angličtina
Zdroj: Microbial cell factories [Microb Cell Fact] 2020 Nov 02; Vol. 19 (1), pp. 200. Date of Electronic Publication: 2020 Nov 02.
DOI: 10.1186/s12934-020-01458-2
Abstrakt: Background: Cost-effective production of the highly effective anti-cancer drug, paclitaxel (Taxol ® ), remains limited despite growing global demands. Low yields of the critical taxadiene precursor remains a key bottleneck in microbial production. In this study, the key challenge of poor taxadiene synthase (TASY) solubility in S. cerevisiae was revealed, and the strains were strategically engineered to relieve this bottleneck.
Results: Multi-copy chromosomal integration of TASY harbouring a selection of fusion solubility tags improved taxadiene titres 22-fold, up to 57 ± 3 mg/L at 30 °C at microscale, compared to expressing a single episomal copy of TASY. The scalability of the process was highlighted through achieving similar titres during scale up to 25 mL and 250 mL in shake flask and bioreactor cultivations, respectively at 20 and 30 °C. Maximum taxadiene titres of 129 ± 15 mg/L and 127 mg/L were achieved through shake flask and bioreactor cultivations, respectively, of the optimal strain at a reduced temperature of 20 °C.
Conclusions: The results of this study highlight the benefit of employing a combination of molecular biology and bioprocess tools during synthetic pathway development, with which TASY activity was successfully improved by 6.5-fold compared to the highest literature titre in S. cerevisiae cell factories.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje