Protective impact of lycopene on ethinylestradiol-induced cholestasis in rats.

Autor: Wadie W; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt. walaa.wadie@pharma.cu.edu.eg., Mohamed AH; Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt., Masoud MA; Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt., Rizk HA; Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt., Sayed HM; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Jazyk: angličtina
Zdroj: Naunyn-Schmiedeberg's archives of pharmacology [Naunyn Schmiedebergs Arch Pharmacol] 2021 Mar; Vol. 394 (3), pp. 447-455. Date of Electronic Publication: 2020 Oct 09.
DOI: 10.1007/s00210-020-01980-5
Abstrakt: Protection against cholestasis and its consequences are considered an essential issue to improve the quality of a patient's life and reduce the number of death every year from liver diseases. Lycopene, a natural carotenoid, has antioxidant scavenger capacity and inhibits inflammation in many experimental models. The present study aimed to elucidate the potential protective effects of lycopene, in comparison to silymarin, in a rat model of cholestatic liver. Animals were daily injected with 17α-ethinylestradiol (EE; 5 mg/kg) for 18 successive days. Silymarin (100 mg/kg) and lycopene (10 mg/kg) were orally administered once per day through the experimental period. Lycopene significantly decreased the EE-induced rise in the serum levels of total bile acid and total bilirubin as well as the activities of alanine aminotransaminase, aspartate aminotransaminase, alkaline phosphatase, and gamma-glutamyl transaminase. Moreover, lycopene reduced the hepatic levels of thiobarbituric acid reactive substances and tumor necrosis factor-α as well as the hepatic activity of myeloperoxidase that were markedly elevated by EE. Lycopene increased the hepatic levels of total protein and albumin and reduced glutathione. In addition, lycopene improved the hepatic histopathological changes induced by EE. These protective effects of lycopene were comparable to that of silymarin. In conclusion, lycopene was effective in protecting against estrogen-induced cholestatic liver injury through its antioxidant and anti-inflammatory activities. Therefore, lycopene might be a potentially effective drug for protection against cholestasis in susceptible women during pregnancy, administration of oral contraceptives, or postmenopausal replacement therapy.
Databáze: MEDLINE