High-Throughput Identification of MHC Class I Binding Peptides Using an Ultradense Peptide Array.

Autor: Haj AK; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705., Breitbach ME; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705., Baker DA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705., Mohns MS; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705., Moreno GK; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705., Wilson NA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705., Lyamichev V; Nimble Therapeutics, Madison, WI 53719; and., Patel J; Nimble Therapeutics, Madison, WI 53719; and., Weisgrau KL; Wisconsin National Primate Research Center, Madison, WI 53715., Dudley DM; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705., O'Connor DH; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; dhoconno@wisc.edu.; Wisconsin National Primate Research Center, Madison, WI 53715.
Jazyk: angličtina
Zdroj: Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2020 Mar 15; Vol. 204 (6), pp. 1689-1696. Date of Electronic Publication: 2020 Feb 14.
DOI: 10.4049/jimmunol.1900889
Abstrakt: Rational vaccine development and evaluation requires identifying and measuring the magnitude of epitope-specific CD8 T cell responses. However, conventional CD8 T cell epitope discovery methods are labor intensive and do not scale well. In this study, we accelerate this process by using an ultradense peptide array as a high-throughput tool for screening peptides to identify putative novel epitopes. In a single experiment, we directly assess the binding of four common Indian rhesus macaque MHC class I molecules (Mamu-A1*001, -A1*002, -B*008, and -B*017) to ∼61,000 8-mer, 9-mer, and 10-mer peptides derived from the full proteomes of 82 SIV and simian HIV isolates. Many epitope-specific CD8 T cell responses restricted by these four MHC molecules have already been identified in SIVmac239, providing an ideal dataset for validating the array; up to 64% of these known epitopes are found in the top 192 SIVmac239 peptides with the most intense MHC binding signals in our experiment. To assess whether the peptide array identified putative novel CD8 T cell epitopes, we validated the method by IFN-γ ELISPOT assay and found three novel peptides that induced CD8 T cell responses in at least two Mamu-A1*001-positive animals; two of these were validated by ex vivo tetramer staining. This high-throughput identification of peptides that bind class I MHC will enable more efficient CD8 T cell response profiling for vaccine development, particularly for pathogens with complex proteomes for which few epitope-specific responses have been defined.
(Copyright © 2020 by The American Association of Immunologists, Inc.)
Databáze: MEDLINE