Food waste from restaurant sector - Characterization for biorefinery approach.

Autor: Carmona-Cabello M; Department of Physical Chemistry and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain., García IL; Department of Physical Chemistry and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain., Sáez-Bastante J; Department of Physical Chemistry and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain., Pinzi S; Department of Physical Chemistry and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain., Koutinas AA; Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece., Dorado MP; Department of Physical Chemistry and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain. Electronic address: pilar.dorado@uco.es.
Jazyk: angličtina
Zdroj: Bioresource technology [Bioresour Technol] 2020 Apr; Vol. 301, pp. 122779. Date of Electronic Publication: 2020 Jan 10.
DOI: 10.1016/j.biortech.2020.122779
Abstrakt: The aim of this study is the analysis of food waste (FW) composition from local catering services to assess potential biorefinery development. Moisture content of different FW samples showed that 27-47% (w/w) was organic material. Main components were lipids (25.7-33.2, w/w), starch (16.2-29.4%, w/w) and proteins (23.5-18.3%, w/w) on a dry basis. A metal profile with Na and Mg as main components, followed by trace elements, i.e. Zn or Fe, was also found in food waste samples. Statistical tests in combination with principal component analysis provides an efficient methodology to establish specific composition variations between FW from different catering services, while relating them to FW typology. The combination of chemical characterization with statistical study constitutes a promising decision-making tool for FW processing and valorization. The innovative methodology presented in this study provides systematic evaluation of FW composition and variability to allow selection of the most appropriate valorization paths.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2020 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE