Angiogenic Activity of Cytochalasin B-Induced Membrane Vesicles of Human Mesenchymal Stem Cells.

Autor: Gomzikova MO; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.; M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia., Zhuravleva MN; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia., Vorobev VV; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia., Salafutdinov II; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia., Laikov AV; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia., Kletukhina SK; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia., Martynova EV; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia., Tazetdinova LG; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia., Ntekim AI; Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, LE12 5RD, UK.; Department of Radiation Oncology, College of Medicine, University of Ibadan 200284, Nigeria., Khaiboullina SF; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.; Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA., Rizvanov AA; Openlab 'Gene and cell technologies', Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.; M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia.
Jazyk: angličtina
Zdroj: Cells [Cells] 2019 Dec 30; Vol. 9 (1). Date of Electronic Publication: 2019 Dec 30.
DOI: 10.3390/cells9010095
Abstrakt: : The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown.
Objectives: The objectives of this study were to analyze the morphology, size distribution, molecular composition, and angiogenic properties of CIMVs-MSCs.
Methods: The morphology of CIMVs-MSC was analyzed by scanning electron microscopy. The proteomic analysis, multiplex analysis, and immunostaining were used to characterize the molecular composition of the CIMVs-MSCs. The transfer of surface proteins from a donor to a recipient cell mediated by CIMVs-MSCs was demonstrated using immunostaining and confocal microscopy. The angiogenic potential of CIMVs-MSCs was evaluated using an in vivo approach of subcutaneous implantation of CIMVs-MSCs in mixture with Matrigel matrix.
Results: Human CIMVs-MSCs retain parental MSCs content, such as growth factors, cytokines, and chemokines: EGF, FGF-2, Eotaxin, TGF-α, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFNα2, IFN-γ, GRO, IL-10, MCP-3, IL-12p40, MDC, IL-12p70, IL-15, sCD40L, IL-17A, IL-1RA, IL-1a, IL-9, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP_1a, MIP-1b, TNF-α, TNF-β, VEGF. CIMVs-MSCs also have the expression of surface receptors similar to those in parental human MSCs (CD90 + , CD29 + , CD44 + , CD73 + ). Additionally, CIMVs-MSCs could transfer membrane receptors to the surfaces of target cells in vitro. Finally, CIMVs-MSCs can induce angiogenesis in vivo after subcutaneous injection into adult rats.
Conclusions: Human CIMVs-MSCs have similar content, immunophenotype, and angiogenic activity to those of the parental MSCs. Therefore, we believe that human CIMVs-MSCs could be used for cell free therapy of degenerative diseases.
Competing Interests: Authors declare that there is no conflict of interest regarding the publication of this paper.
Databáze: MEDLINE