INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases.

Autor: Beekhof R; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., van Alphen C; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Henneman AA; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Knol JC; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Pham TV; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Rolfs F; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Labots M; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Henneberry E; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Le Large TY; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., de Haas RR; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Piersma SR; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Vurchio V; Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy., Bertotti A; Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy., Trusolino L; Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy., Verheul HM; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands., Jimenez CR; Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands c.jimenez@vumc.nl.; OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Jazyk: angličtina
Zdroj: Molecular systems biology [Mol Syst Biol] 2019 Apr 12; Vol. 15 (4), pp. e8250. Date of Electronic Publication: 2019 Apr 12.
DOI: 10.15252/msb.20188250
Abstrakt: Identifying hyperactive kinases in cancer is crucial for individualized treatment with specific inhibitors. Kinase activity can be discerned from global protein phosphorylation profiles obtained with mass spectrometry-based phosphoproteomics. A major challenge is to relate such profiles to specific hyperactive kinases fueling growth/progression of individual tumors. Hitherto, the focus has been on phosphorylation of either kinases or their substrates. Here, we combined label-free kinase-centric and substrate-centric information in an Integrative Inferred Kinase Activity (INKA) analysis. This multipronged, stringent analysis enables ranking of kinase activity and visualization of kinase-substrate networks in a single biological sample. To demonstrate utility, we analyzed (i) cancer cell lines with known oncogenes, (ii) cell lines in a differential setting (wild-type versus mutant, +/- drug), (iii) pre- and on-treatment tumor needle biopsies, (iv) cancer cell panel with available drug sensitivity data, and (v) patient-derived tumor xenografts with INKA-guided drug selection and testing. These analyses show superior performance of INKA over its components and substrate-based single-sample tool KARP, and underscore target potential of high-ranking kinases, encouraging further exploration of INKA's functional and clinical value.
(© 2019 The Authors. Published under the terms of the CC BY 4.0 license.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje