Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state.

Autor: Strobl FG; Lehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, Germany ; Nanosystems Initiative Munich NIM, Schellingstr. 4, 80799 München, Germany., Seitz F; Lehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, Germany., Westerhausen C; Lehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, Germany ; Nanosystems Initiative Munich NIM, Schellingstr. 4, 80799 München, Germany., Reller A; Institut für Physik, Universität Augsburg, 86159 Augsburg, Germany., Torrano AA; Nanosystems Initiative Munich NIM, Schellingstr. 4, 80799 München, Germany ; Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany., Bräuchle C; Nanosystems Initiative Munich NIM, Schellingstr. 4, 80799 München, Germany ; Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany., Wixforth A; Lehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, Germany ; Nanosystems Initiative Munich NIM, Schellingstr. 4, 80799 München, Germany., Schneider MF; Department for Mechanical Engineering, Boston University, Boston, MA 02215, USA.
Jazyk: angličtina
Zdroj: Beilstein journal of nanotechnology [Beilstein J Nanotechnol] 2014 Dec 23; Vol. 5, pp. 2468-78. Date of Electronic Publication: 2014 Dec 23 (Print Publication: 2014).
DOI: 10.3762/bjnano.5.256
Abstrakt: The uptake of nanoparticles into cells often involves their engulfment by the plasma membrane and a fission of the latter. Understanding the physical mechanisms underlying these uptake processes may be achieved by the investigation of simple model systems that can be compared to theoretical models. Here, we present experiments on a massive uptake of silica nanoparticles by giant unilamellar lipid vesicles (GUVs). We find that this uptake process depends on the size of the particles as well as on the thermodynamic state of the lipid membrane. Our findings are discussed in the light of several theoretical models and indicate that these models have to be extended in order to capture the interaction between nanomaterials and biological membranes correctly.
Databáze: MEDLINE