Interleukin-6 drives melanoma cell motility through p38α-MAPK-dependent up-regulation of WNT5A expression.

Autor: Linnskog R; Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden., Jönsson G; Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden., Axelsson L; Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden., Prasad CP; Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden., Andersson T; Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden. Electronic address: tommy.andersson@med.lu.se.
Jazyk: angličtina
Zdroj: Molecular oncology [Mol Oncol] 2014 Dec; Vol. 8 (8), pp. 1365-78. Date of Electronic Publication: 2014 May 27.
DOI: 10.1016/j.molonc.2014.05.008
Abstrakt: Extensive research has demonstrated a tumor-promoting role of increased WNT5A expression in malignant melanoma. However, very little light has been shed upon how WNT5A expression is up-regulated in melanoma. A potential regulator of WNT5A expression is the pro-inflammatory cytokine Interleukin (IL)-6, which shares the ability of WNT5A to increase melanoma cell invasion. Here, we investigate whether IL-6 can promote melanoma cell motility through an increased expression of WNT5A. We clearly demonstrate that the WNT5A-antagonistic peptide Box5 could inhibit IL-6-induced melanoma cell migration and invasion. Furthermore, IL-6 stimulation of the human melanoma cell lines HTB63 and A375 increased the expression of WNT5A in a dose-dependent manner. To identify the signaling mechanism responsible for this up-regulation, we explored the involvement of the three main signals induced by IL-6; STAT3, Akt and ERK 1/2. Of these, only STAT3 was activated by IL-6 in the melanoma cell lines tested. However, the STAT3 inhibitor S3I-201 failed to inhibit IL-6-induced WNT5A up-regulation in HTB63 and A375 cells. Nor did STAT3 siRNA silencing affect the expression of WNT5A. In search of an alternative signaling mechanism, we detected IL-6-induced activation of p38-MAPK in HTB63 and A375 cells. The p38-MAPK inhibitor SB203580 abolished the IL-6-induced WNT5A up-regulation and blocked IL-6-induced melanoma cell invasion. The latter effect could be rescued by the addition of recombinant WNT5A. Notably, immunoprecipitation analysis revealed that only the p38α-MAPK isoform was activated by IL-6, and subsequent siRNA silencing of p38α-MAPK abolished the IL-6-induced up-regulation of WNT5A. Taken together, we demonstrate a novel link between the two melanoma pro-metastatic agents IL-6 and WNT5A explaining how IL-6 can increase melanoma cell invasion and thus promote the metastatic process. This finding provides a basis for future therapeutic intervention of melanoma progression.
(Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE