Purification, partial characterization and immobilization of a mannose-specific lectin from seeds of Dioclea lasiophylla mart.

Autor: Pinto-Júnior VR; Laboratory of Biologically Active Molecules (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Av. Humberto Monte s/n, Bloco 907, Lab. 1075, Campus do Pici, Fortaleza-CE 60440-970, Brazil. juniorreis4@hotmail.com, de Santiago MQ, Osterne VJ, Correia JL, Pereira-Júnior FN, Cajazeiras JB, de Vasconcelos MA, Teixeira EH, do Nascimento AS, Miguel TB, Miguel Ede C, Sampaio AH, do Nascimento KS, Nagano CS, Cavada BS
Jazyk: angličtina
Zdroj: Molecules (Basel, Switzerland) [Molecules] 2013 Sep 04; Vol. 18 (9), pp. 10857-69. Date of Electronic Publication: 2013 Sep 04.
DOI: 10.3390/molecules180910857
Abstrakt: Lectin from the seeds of Dioclea lasiophylla (DlyL) was purified in a single step by affinity chromatography on a Sephadex® G-50 column. DlyL strongly agglutinated rabbit erythrocytes and was inhibited by monosaccharides (D-mannose and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). Similar to other Diocleinae lectins, DlyL has three chains, α, β and γ, with mass of 25,569 ± 2, 12,998 ± 1 and 12,588 ± 1 Da, respectively, and has no disulfide bonds. The hemagglutinating activity of DlyL was optimal in pH 8.0, stable at a temperature of 70 °C and decreased in EDTA solution, indicating that lectin activity is dependent on divalent metals. DlyL exhibited low toxicity on Artemia sp. nauplii, but this effect was dependent on the concentration of lectin in solution. DlyL immobilized on cyanogen bromide-activated Sepharose® 4B bound 0.917 mg of ovalbumin per cycle, showing the ability to become a tool for glycoproteomics studies.
Databáze: MEDLINE