[Comparing performance of "TB-BIOCHIP", "Xpert MTB/RIF" and "genotype MTBDRplus" assays for fast identification of mutations in the Mycobacterium tuberculosis complex in sputum from TB patients].

Autor: Nosova EIu, Krasnova MA, Galkina KIu, Makarova MV, Litvinov VI, Moroz AM
Jazyk: ruština
Zdroj: Molekuliarnaia biologiia [Mol Biol (Mosk)] 2013 Mar-Apr; Vol. 47 (2), pp. 267-74.
DOI: 10.7868/s0026898413010102
Abstrakt: The frequency of mutations causing drug resistance in MTB isolates were studied in the respiratory material obtained from TB-patients in the Moscow Region. In izoniazid-resistant isolates, the most prevalent mutation was found to be the Ser315Thr substitution in the katG gene (15.8%) whereas the most frequent mutations in multidrug-resistant isolates were Ser531Leu and Ser315Thr in the rpoB and katG genes (26.3%), or a combination of these two substitutions with a T15 mutation in the inhA gene (5.3%). We compared performance of three molecular assays--"TB-BIOCHIP" ("BIOCHIP-IMB", Ltd, Russia), Xpert MTB/RIF ("Cepheid", USA) and GenoType MTBDRplus ("Hain Life-science", Germany), with the efficiency of luminescent microscopy, and phenotypic drug-suscepibility testing in an automated system BACTEC MGIT 960 (Becton, Disckinson and Company, USA). Xpert MTB/RIF, TB-BIOCHIP and GenoType MTBDRplus detected MTB in sputum in 92, 78 and 49% of all culture-positive cases, respectively. The agreement between standard cultural data and molecular DST results for Xpert MTB/RIF (resistance towards rifampicin), for TB-BIOCHIP and GenoType MTBDRplus (resistance towards rifampicin and izoniazid) amounted to 100, 97 and 100% respectively. Summing up, Xpert MTB/RIF was concluded to be the most efficient assay for primary detection of MTB, whereas the TB-BIOCHIP was shown to be the only molecular assay sensitive enough for simultaneous detection of MTB DNA and for revealing multidrug resistance in sputum (i.e. resistance to both first-line anti-TB drugs, rifampicin and izoniazid).
Databáze: MEDLINE