Autor: |
Ramos-Alves FE; Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil., de Queiroz DB, Santos-Rocha J, Duarte GP, Xavier FE |
Jazyk: |
angličtina |
Zdroj: |
PloS one [PLoS One] 2012; Vol. 7 (11), pp. e50593. Date of Electronic Publication: 2012 Nov 28. |
DOI: |
10.1371/journal.pone.0050593 |
Abstrakt: |
This study analyzed the effect of in utero exposure to maternal diabetes on contraction to noradrenaline in mesenteric resistance arteries (MRA) from adult offspring, focusing on the role of cyclooxygenase (COX)-derived prostanoids. Diabetes in the maternal rat was induced by a single injection of streptozotocin (50 mg/kg body weight) on day 7 of pregnancy. Contraction to noradrenaline was analyzed in isolated MRA from offspring of diabetic (O-DR) and non-diabetic (O-CR) rats at 3, 6 and 12 months of age. Release of thromboxane A(2) (TxA(2)) and prostaglandins E(2) (PGE(2)) and F(2α) (PGF(2α)), was measured by specific enzyme immunoassay kits. O-DR developed hypertension from 6 months of age compared with O-CR. Arteries from O-DR were hyperactive to noradrenaline only at 6 and 12 months of age. Endothelial removal abolished this hyperreactivity to noradrenaline between O-CR and O-DR. Preincubation with either the COX-1/2 (indomethacin) or COX-2 inhibitor (NS-398) decreased noradrenaline contraction only in 6- and 12-month-old O-DR, while it remained unmodified by COX-1 inhibitor SC-560. In vessels from 6-month-old O-DR, a similar reduction in the contraction to noradrenaline produced by NS-398 was observed when TP and EP receptors were blocked (SQ29548+AH6809). In 12-month-old O-DR, this effect was only achieved when TP, EP and FP were blocked (SQ29548+AH6809+AL8810). Noradrenaline-stimulated TxB(2) and PGE(2) release was higher in 6- and 12-month-old O-DR, whereas PGF(2α) was increased only in 12-month-old O-DR. Our results demonstrated that in utero exposure to maternal hyperglycaemia in rats increases the participation of COX-2-derived prostanoids on contraction to noradrenaline, which might help to explain the greater response to this agonist in MRA from 6- and 12-month-old offspring. As increased contractile response in resistance vessels may contribute to hypertension, our results suggest a role for these COX-2-derived prostanoids in elevating vascular resistance and blood pressure in offspring of diabetic rats. |
Databáze: |
MEDLINE |
Externí odkaz: |
|