Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons.

Autor: Kwok JC; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China., Yuen YL, Lau WK, Zhang FX, Fawcett JW, Chan YS, Shum DK
Jazyk: angličtina
Zdroj: Neural development [Neural Dev] 2012 Feb 03; Vol. 7, pp. 6. Date of Electronic Publication: 2012 Feb 03.
DOI: 10.1186/1749-8104-7-6
Abstrakt: Background: Establishing correct neuronal circuitry is crucial to proper function of the vertebrate nervous system. The abundance of chondroitin sulfate (CS) proteoglycans in embryonic neural environments suggests that matrix proteoglycans regulate axonal projections when fiber tracts have not yet formed. Among the early-born neurons, the vestibular nucleus (VN) neurons initiate commissural projections soon after generation at E12.5 and reach the contralateral target by E15.5 in the rat hindbrain. We therefore exploited 24-hour cultures (1 day in vitro (DIV)) of the rat embryos and chondroitinase ABC treatment of the hindbrain matrix to reveal the role of CS moieties in axonal initiation and projection in the early hindbrain.
Results: DiI tracing from the VN at E12.5(+1 DIV) showed contralaterally projecting fibers assuming fascicles that hardly reached the midline in the controls. In the enzyme-treated embryos, the majority of fibers were unfasciculated as they crossed the midline at 90°. At E13.5(+1 DIV), the commissural projections formed fascicles and crossed the midline in the controls. Enzyme treatment apparently did not affect the pioneer axons that had advanced as thick fascicles normal to the midline and beyond, towards the contralateral VN. Later projections, however, traversed the enzyme-treated matrix as unfasciculated fibers, deviated from the normal course crossing the midline at various angles and extending beyond the contralateral VN. This suggests that CSs also limit the course of the later projections, which otherwise would be attracted to alternative targets.
Conclusions: CS moieties in the early hindbrain therefore control the course and fasciculation of axonal projections and the timing of axonal arrival at the target.
Databáze: MEDLINE