Activation of adenylyl cyclases, regulation of insulin status, and cell survival by G(alpha)olf in pancreatic beta-cells.

Autor: Régnauld KL; Institut National de la Santé et de la Recherche Médicale U482, Signal Transduction and Cellular Function in Diabetes and Digestive Cancers, Saint-Antoine Hospital, 75571 Paris Cedex 12, France., Leteurtre E, Gutkind SJ, Gespach CP, Emami S
Jazyk: angličtina
Zdroj: American journal of physiology. Regulatory, integrative and comparative physiology [Am J Physiol Regul Integr Comp Physiol] 2002 Mar; Vol. 282 (3), pp. R870-80.
DOI: 10.1152/ajpregu.00374.2001
Abstrakt: Because we recently identified the G(alpha)olf subunit in rat pancreatic beta-cells, we investigated the downstream effectors and the biological functions of this G protein in HEK-293T cells and the insulin-secreting mouse betaTC-3 cell line. With the use of transient transfection of HEK-293T cells with constitutively activated G(alpha)olf (G(alpha)olfQ214L, i.e., AG(alpha)olf), together with expression vectors encoding the adenylyl cyclase (AC) isoforms (AC-I to -VIII and soluble AC), compared with cotransfections using AG(alphas) (G(alphas)R201C), we observed that AG(alpha)olf preferentially activates AC-I and -VIII, which are also expressed in beta-cells. Stable overexpression of wild-type or AG(alpha)olf in betaTC-3 cells resulted in partial attenuation of insulin secretion and biosynthesis, suggesting that chronic activation of the G(alpha)olf-signaling pathway is associated with beta-cell desensitization. In agreement, transfected betaTC-3 cells present a decreased insulin content with respect to parental cells, whereas the proinsulin convertases PC-1 and PC-2 were unaffected. Furthermore, betaTC-3-AG(alpha)olf cells are resistant to serum starvation-induced apoptosis. Our findings suggest that G(alpha)olf is involved in insulin status, cell survival, and regeneration of the insulin-secreting beta-cells during development and diabetes.
Databáze: MEDLINE