Classes of fuzzy filters of residuated lattice ordered monoids.
Autor: | Rachůnek, Jiří, 1947- |
---|---|
Další autoři: |
Šalounová, Dana, 1963-
|
Jazyk: | angličtina |
Předmět: |
matematická logika
fuzzy logika algebraická logika algebraické struktury mathematical logic fuzzy logic algebraic logic algebraic structures články journal articles residuated l-monoid non-classical logics basic fuzzy logic intuitionistic logic filter fuzzy filter BL-algebra MV-algebra Heyting algebra |
Druh dokumentu: | Non-fiction |
Abstrakt: | Abstract: The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (Rl-monoids) are common generalizations of BL-algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding algebras. In the paper we investigate implicative, positive implicative, Boolean and fantastic fuzzy filters of bounded Rl-monoids. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |