Zobrazeno 1 - 10
of 163 778
pro vyhledávání: 'Hirsch, Morris W.'
Autor:
Hirsch, Morris W.
Two types of dynamics, chaotic and monotone, are compared. It is shown that monotone maps in strongly ordered spaces do not have chaotic attracting sets.
Externí odkaz:
http://arxiv.org/abs/1906.07688
Unless another thing is stated one works in the $C^\infty$ category and manifolds have empty boundary. Let $X$ and $Y$ be vector fields on a manifold $M$. We say that $Y$ tracks $X$ if $[Y,X]=fX$ for some continuous function $f\colon M\rightarrow\mat
Externí odkaz:
http://arxiv.org/abs/1807.04533
Autor:
Hirsch, Morris W.
Let X be a connected open set in n-dimensional Euclidean space, partially ordered by a closed convex cone K with nonempty interior: y > x if and only if y-x is nonzero and in K. Theorem: If F is a monotone local flow in X whose periodic points are de
Externí odkaz:
http://arxiv.org/abs/1805.09668
Autor:
Hirsch, Morris W.1,2 mwhirsch@chorus.net, Robbin, Joel W.2 robbin@math.wisc.edu
Publikováno v:
European Journal of Pure & Applied Mathematics. Oct2021, Vol. 14 Issue 4, p1108-1111. 4p.
Autor:
Hirsch, Morris W.
It is proved that a certain type of monotone flow has a global period provided periodic points are dense.
Externí odkaz:
http://arxiv.org/abs/1805.02592
Autor:
Hirsch, Morris W.
Let X be a subset of R^n whose interior is connected and dense in X, ordered by a polyhedral cone in R^n with nonempty interior. Let T be a monotone homeomorphism of X whose periodic points are dense. Then T is periodic.
Comment: Presented at AI
Comment: Presented at AI
Externí odkaz:
http://arxiv.org/abs/1611.09251
Autor:
Hirsch, Morris W., Turiel, F. -J.
On a real ($\mathbb F=\mathbb R$) or complex ($\mathbb F=\mathbb C$) analytic connected 2-manifold $M$ with empty boundary consider two vector fields $X,Y$. We say that $Y$ {\it tracks} $X$ if $[Y,X]=fX$ for some continuous function $f\colon M\righta
Externí odkaz:
http://arxiv.org/abs/1606.08322
Autor:
Hirsch, Morris W.
Assume M is a 3-dimensional real manifold without boundary, A is an abelian Lie algebra of analytic vector fields on M, and X is an element of A. The following result is proved: If K is a locally maximal compact set of zeroes of X and the Poincar'e-H
Externí odkaz:
http://arxiv.org/abs/1601.02992