Zobrazeno 1 - 10
of 33
pro vyhledávání: '"yhtälöt"'
We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. This version of the inequ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5276326da39cfafde3e5c1eaa694d146
http://urn.fi/URN:NBN:fi:jyu-202210315032
http://urn.fi/URN:NBN:fi:jyu-202210315032
Autor:
Janne Nurminen
In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential $q$ in $L^{n/2+\varepsilon}$, $\varepsilon>0$, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results fr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5e89a07201fec720ad511567b4e7079
http://arxiv.org/abs/2206.04866
http://arxiv.org/abs/2206.04866
In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering problems, and show that th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d097adc8a983de2cdb20fe0e15cb85a
http://arxiv.org/abs/2204.13934
http://arxiv.org/abs/2204.13934
Autor:
Timo Väisänen, Jukka Räbinä, Johannes Markkanen, Karri Muinonen, Antti Penttilä, Maxim A. Yurkin
We study the scattering properties of a cloud of particles. The particles are spherical, close to the incident wavelength in size, have a high albedo, and are randomly packed to 20% volume density. We show, using both numerically exact methods for so
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db1c9534bb8e70b6011c28b842b0373d
http://hdl.handle.net/10138/329987
http://hdl.handle.net/10138/329987
We consider an inverse problem for the Boltzmann equation on a globally hyperbolic Lorentzian spacetime $(M,g)$ with an unknown metric $g$. We consider measurements done in a neighbourhood $V\subset M$ of a timelike path $\mu$ that connects a point $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98fd21a566cfd31533beda8e1f899222
Publikováno v:
Multimodal Technologies and Interaction
Volume 4
Issue 4
Multimodal Technologies and Interaction, Vol 4, Iss 77, p 77 (2020)
Volume 4
Issue 4
Multimodal Technologies and Interaction, Vol 4, Iss 77, p 77 (2020)
Tangible technologies provide interactive links between the physical and digital worlds, thereby merging the benefits of physical and virtual manipulatives. To explore the potentials of tangible technologies for learning linear equations, a tangible
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::e52ea28845489bd877e795e2dce5f371
http://urn.fi/URN:NBN:fi:jyu-202010276391
http://urn.fi/URN:NBN:fi:jyu-202010276391
In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35fff7df20a85943576683f92d656c00
http://hdl.handle.net/10138/313514
http://hdl.handle.net/10138/313514
Autor:
Juhana Siljander, José Miguel Urbano
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the
Autor:
Karttunen, Hanna-Kaisa
Tämän tutkielman tarkoituksena on syventää tietoja kompleksianalyysistä tutustumalla harmonisiin funktioihin ja konformikuvauksiin. Funktioita, jotka toteuttavat Laplacen yhtälön, kutsutaan harmonisiksi funktioiksi. Harmonisten funktioiden mä
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1222::ea9d382b4b0f1ceaaa98c6f552c418d8
http://urn.fi/URN:NBN:fi:jyu-201501271190
http://urn.fi/URN:NBN:fi:jyu-201501271190
Autor:
Pakarinen, Tiina
Tämän tutkielman tarkoituksena on tutustua kahteen tärkeään osittaisdifferentiaaliyhtälöön; Laplacen yhtälöön ja lämpöyhtälöön. Näitä molempia hyödynnetään fysiikan lisäksi useiden muidenkin tieteenalojen sovelluksissa. Lämpöy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1222::a8f815c4d47b9aa57c502d69a9e1f586
http://urn.fi/URN:NBN:fi:jyu-201505101782
http://urn.fi/URN:NBN:fi:jyu-201505101782