Zobrazeno 1 - 10
of 187
pro vyhledávání: '"weighted modulus of continuity"'
Publikováno v:
Demonstratio Mathematica, Vol 55, Iss 1, Pp 153-162 (2022)
The present paper deals with an extension of approximation properties of generalized sampling series to weighted spaces of functions. A pointwise and uniform convergence theorem for the series is proved for functions belonging to weighted spaces. A r
Externí odkaz:
https://doaj.org/article/e78b8068e2d542e79e898920d0299649
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-14 (2021)
Abstract The aim of this paper is to study a new generalization of Lupaş-type operators whose construction depends on a real-valued function ρ by using two sequences u m $u_{m} $ and v m $v_{m}$ of functions. We prove that the new operators provide
Externí odkaz:
https://doaj.org/article/8ffff76bd22d47d5ba9561df3bb81815
Autor:
Abdullah Alotaibi
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-15 (2020)
Abstract The main purpose of this article is to introduce a new generalization of q-Phillips operators generated by Dunkl exponential function. We establish some approximation results for these operators. We also determine the order of approximation,
Externí odkaz:
https://doaj.org/article/905112f2e06748d9aeade4b010cd8d8d
Publikováno v:
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-14 (2019)
Abstract The main purpose of this paper is to construct q-Phillips operators generated by Dunkl generalization. We prove several results of Korovkin type and estimate the order of convergence in terms of several moduli of continuity.
Externí odkaz:
https://doaj.org/article/8327f46cd82f4cc1aa505e197531c63e
Publikováno v:
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-11 (2019)
Abstract In the present manuscript, we define a non-negative parametric variant of Baskakov–Durrmeyer operators to study the convergence of Lebesgue measurable functions and introduce these as α-Baskakov–Durrmeyer operators. We study the uniform
Externí odkaz:
https://doaj.org/article/8398f263363c480cb85efdab816546f5
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Trapti Neer, Purshottam Narain Agrawal
Publikováno v:
Journal of Inequalities and Applications, Vol 2017, Iss 1, Pp 1-20 (2017)
Abstract In this paper, we establish a link between the Szász-Durrmeyer type operators and multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth order central moment and
Externí odkaz:
https://doaj.org/article/e0af080b4b534606a1ff0a6ba6f32992
Publikováno v:
Journal of Inequalities and Applications, Vol 2017, Iss 1, Pp 1-20 (2017)
Abstract The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340,
Externí odkaz:
https://doaj.org/article/08b7baef4df44f36b4498aabb9836b07
Autor:
Gupta Pooja, Agrawal Purshottam Narain
Publikováno v:
Demonstratio Mathematica, Vol 50, Iss 1, Pp 130-143 (2017)
The purpose of this paper is to establish the rate of convergence in terms of the weighted modulus of continuity and Lipschitz type maximal function for the q-Szász-beta operators. We also study the rate of A-statistical convergence. Lastly, we modi
Externí odkaz:
https://doaj.org/article/877b7044df6a43648e7a44edc015c7f6