Zobrazeno 1 - 10
of 74
pro vyhledávání: '"voronovskaja theorem"'
Publikováno v:
Mathematics, Vol 12, Iss 23, p 3645 (2024)
This research work introduces a connection of adjoint Bernoulli’s polynomials and a gamma function as a sequence of linear positive operators. Further, the convergence properties of these sequences of operators are investigated in various functiona
Externí odkaz:
https://doaj.org/article/b10981d8b35f4121ae3d5fa8d99bfde9
Autor:
Rafah Katham, Ali Mohammad
Publikováno v:
مجلة جامعة الانبار للعلوم الصرفة, Vol 16, Iss 2, Pp 92-98 (2022)
The present paper is defined a new better approximation of the squared Bernstein polynomials. This better approximation has been built on a positive function defined on the interval [0,1] which has some properties. First, the moderate uniform converg
Externí odkaz:
https://doaj.org/article/cdf5571184574d21af445f552dc30df5
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 3, Pp 666-675 (2021)
In this paper, we generalize the family of exponential sampling series for functions of $n$ variables and study their pointwise and uniform convergence as well as the rate of convergence for the functions belonging to space of $\log$-uniformly contin
Externí odkaz:
https://doaj.org/article/557c3199f8bc45aea2f9db710e9b6518
Autor:
Khursheed J. Ansari, Fuat Usta
Publikováno v:
Symmetry, Vol 14, Iss 8, p 1596 (2022)
The main purpose of this paper is to define a new family of Szász–Mirakyan operators that depends on a non-negative parameter, say α. This new family of Szász–Mirakyan operators is crucial in that it includes both the existing Szász–Mirakya
Externí odkaz:
https://doaj.org/article/2faf03b5b368428e861082f7c83c7466
Autor:
Agratini Octavian
Publikováno v:
Annals of the West University of Timisoara: Mathematics and Computer Science, Vol 56, Iss 2, Pp 28-42 (2018)
On the last five decades the interest of the study of positive approximation processes have emerged with growing evidence. A special place is occupied by the in-depth study of classical operators. The most eloquent example is Bernstein operator which
Externí odkaz:
https://doaj.org/article/c1017a980fcf498982c3055395587e6b
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-12 (2018)
Abstract In the present paper, we study a new type of Bernstein operators depending on the parameter λ∈[−1,1] $\lambda\in[-1,1]$. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Vor
Externí odkaz:
https://doaj.org/article/aa8fc6a473974754b3f081c48e57b231
Autor:
Harun ÇİÇEK, Aydın İZGİ
Publikováno v:
Volume: 5, Issue: 2 135-144
Fundamental Journal of Mathematics and Applications
Fundamental Journal of Mathematics and Applications
In this paper, the approximation properties and the rate of convergence of modified bivariate Bernstein-Durrmeyer Operators on a triangular region are examined. Furthermore, definitions and some properties of modulus of continuity for functions of tw
Autor:
Usta, Khursheed J. Ansari, Fuat
Publikováno v:
Symmetry; Volume 14; Issue 8; Pages: 1596
The main purpose of this paper is to define a new family of Szász–Mirakyan operators that depends on a non-negative parameter, say α. This new family of Szász–Mirakyan operators is crucial in that it includes both the existing Szász–Mirakya