Zobrazeno 1 - 10
of 4 253
pro vyhledávání: '"vision AI"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Crosby, Alison, Orenstein, Eric C., Poulton, Susan E., Bell, Katherine L. C., Woodward, Benjamin, Ruhl, Henry, Katija, Kakani, Forbes, Angus G.
Ocean scientists studying diverse organisms and phenomena increasingly rely on imaging devices for their research. These scientists have many tools to collect their data, but few resources for automated analysis. In this paper, we report on discussio
Externí odkaz:
http://arxiv.org/abs/2303.05480
Publikováno v:
ACM FAccT 2023
Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a p
Externí odkaz:
http://arxiv.org/abs/2212.11261
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sangameswaran, Rohan
According to the World Health Organization(WHO), malaria is estimated to have killed 627,000 people and infected over 241 million people in 2020 alone, a 12% increase from 2019. Microscopic diagnosis of blood cells is the standard testing procedure t
Externí odkaz:
http://arxiv.org/abs/2208.06114
Publikováno v:
Applied Sciences, Vol 14, Iss 7, p 2750 (2024)
This study presents a development plan for a vision AI system to enhance productivity in industrial environments, where environmental control is challenging, by using AI technology. An image pre-processing algorithm was developed using a mobile robot
Externí odkaz:
https://doaj.org/article/56de702d9fcf44ad84363467128d08e7
Autor:
Ip W; Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA. wui@stanford.edu., Xenochristou M; Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, USA., Sui E; Department of Computer Science, Stanford University, Palo Alto, CA, USA., Ruan E; Digital Health Care Integration, Stanford Health Care, Palo Alto, CA, USA., Ribeira R; Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA., Dash D; Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA., Srinivasan M; Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA., Artandi M; Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA., Omiye JA; Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, USA.; Department of Dermatology, Stanford University School of Medicine, Palo Alto, CA, USA., Scoulios N; Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA., Hofmann HL; Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, USA., Mottaghi A; Department of Electrical Engineering, Stanford University, Palo Alto, CA, USA., Weng Z; Institute for Computational & Mathematical Engineering, Stanford University, Palo Alto, CA, USA., Kumar A; Department of Computer Science, Stanford University, Palo Alto, CA, USA., Ganesh A; Department of Computer Science, Stanford University, Palo Alto, CA, USA., Fries J; Stanford Center for Biomedical Informatics Research, Palo Alto, CA, USA., Yeung-Levy S; Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, USA.; Department of Computer Science, Stanford University, Palo Alto, CA, USA.; Department of Electrical Engineering, Stanford University, Palo Alto, CA, USA.; Clinical Excellence Research Center, Stanford University School of Medicine, Palo Alto, CA, USA.; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA., Hofmann LV; Digital Health Care Integration, Stanford Health Care, Palo Alto, CA, USA.; Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA.
Publikováno v:
NPJ digital medicine [NPJ Digit Med] 2024 Dec 19; Vol. 7 (1), pp. 371. Date of Electronic Publication: 2024 Dec 19.
Autor:
Borg, Markus, Jabangwe, Ronald, Åberg, Simon, Ekblom, Arvid, Hedlund, Ludwig, Lidfeldt, August
Machine Learning (ML) is a fundamental part of modern perception systems. In the last decade, the performance of computer vision using trained deep neural networks has outperformed previous approaches based on careful feature engineering. However, th
Externí odkaz:
http://arxiv.org/abs/2103.01837