Zobrazeno 1 - 10
of 59 151
pro vyhledávání: '"verifiability"'
Publikováno v:
IEEE S&P 2025 (Oakland)
Fully Homomorphic Encryption (FHE) allows computations to be performed directly on encrypted data without needing to decrypt it first. This "encryption-in-use" feature is crucial for securely outsourcing computations in privacy-sensitive areas such a
Externí odkaz:
http://arxiv.org/abs/2410.15215
Autor:
Collins, Christopher J.1, Martinez‐Moreno, Julian E.1 jem546@cornell.edu
Publikováno v:
Human Resource Management. Sep2022, Vol. 61 Issue 5, p585-597. 13p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cannon, James N.1 (AUTHOR), Denison, Christine A.2 (AUTHOR), Watanabe, Olena V.2 (AUTHOR) watanabe@iastate.edu
Publikováno v:
Journal of Accounting, Auditing & Finance. Jul2021, Vol. 36 Issue 3, p557-584. 28p. 1 Diagram, 5 Charts.
Autor:
Schmidt, Joseph A.1 (AUTHOR) jschmidt@edwards.usask.ca, Bourdage, Joshua S.2 (AUTHOR), Lukacik, Eden-Raye3 (AUTHOR), Dunlop, Patrick D.4 (AUTHOR)
Publikováno v:
Journal of Business & Psychology. Feb2024, Vol. 39 Issue 1, p67-82. 16p.
In recent years, achieving verifiable quantum advantage on a NISQ device has emerged as an important open problem in quantum information. The sampling-based quantum advantages are not known to have efficient verification methods. This paper investiga
Externí odkaz:
http://arxiv.org/abs/2310.14464
Autor:
Zhang, Jiayu
Remote state preparation with verifiability (RSPV) is an important quantum cryptographic primitive [GV19,Zha22]. In this primitive, a client would like to prepare a quantum state (sampled or chosen from a state family) on the server side, such that i
Externí odkaz:
http://arxiv.org/abs/2310.05246
Publikováno v:
Application Research of Computers / Jisuanji Yingyong Yanjiu. Oct2024, Vol. 41 Issue 10, p3160-3165. 6p.
Proponents of software verification have argued that simpler code is easier to verify: that is, that verification tools issue fewer false positives and require less human intervention when analyzing simpler code. We empirically validate this assumpti
Externí odkaz:
http://arxiv.org/abs/2310.20160
Autor:
Xing, Zhibo, Zhang, Zijian, Liu, Jiamou, Zhang, Ziang, Li, Meng, Zhu, Liehuang, Russello, Giovanni
With the rapid advancement of artificial intelligence technology, the usage of machine learning models is gradually becoming part of our daily lives. High-quality models rely not only on efficient optimization algorithms but also on the training and
Externí odkaz:
http://arxiv.org/abs/2310.14848