Zobrazeno 1 - 10
of 4 042
pro vyhledávání: '"vegetation index (VI)"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Remote Sensing, Vol 13, Iss 1, p 25 (2020)
Chemical spill accidents lead to environmental problems, especially for plants. Plant vegetation assessment is necessary after a chemical accident; however, conventional methods can be inaccurate and time-consuming. This study used the vegetation ind
Externí odkaz:
https://doaj.org/article/53325a7bdc294815b1c3a16654593f3f
Publikováno v:
Remote Sensing, Vol 13, Iss 25, p 25 (2021)
Remote Sensing; Volume 13; Issue 1; Pages: 25
Remote Sensing; Volume 13; Issue 1; Pages: 25
Chemical spill accidents lead to environmental problems, especially for plants. Plant vegetation assessment is necessary after a chemical accident; however, conventional methods can be inaccurate and time-consuming. This study used the vegetation ind
Publikováno v:
Information Processing in Agriculture, Vol 10, Iss 3, Pp 361-376 (2023)
Due to the worldwide population growth and the increasing needs for sugar-based products, accurate estimation of sugarcane biomass is critical to the precise monitoring of sugarcane growth. This research aims to find the imperative predictors corresp
Externí odkaz:
https://doaj.org/article/61f6153bdf654da1b6e316507f773ade
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 16, Pp 9977-9988 (2023)
Optical remote sensing offers a convenient method to monitor changes in mountain vegetation at regional and global scales, thanks to its synoptic coverage and frequent temporal sampling capabilities provided by satellite observations. However, local
Externí odkaz:
https://doaj.org/article/6d6c55cc0cb341648f765356f936c5be
Forest Volume Estimation Method Based on Allometric Growth Model and Multisource Remote Sensing Data
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 16, Pp 8900-8912 (2023)
The accurate forest volume is crucial for forest management, but rapid, large-scale, and high-accuracy estimation is still challenging. We proposed a method of coupling allometric growth model and multisource data for forest volume estimation (CAMFVe
Externí odkaz:
https://doaj.org/article/d4439d455d994e4194cc3dc5651fdc49
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 16, Pp 3568-3582 (2023)
As an essential vegetation biophysical trait that determines the plant's structure and photosynthetic capacity, characterizing of leaf area index (LAI) is important for vegetation growth and health monitoring. The empirical models based on vegetation
Externí odkaz:
https://doaj.org/article/eb855276f76841e791b0f7313315b398
Publikováno v:
Remote Sensing, Vol 15, Iss 23, p 5581 (2023)
The accuracy of vegetation indices (VIs) in estimating forest stand age is significantly inadequate due to insufficient consideration of the differences in the physiological functions of forest ecosystems, which limits the accuracy of carbon sink sim
Externí odkaz:
https://doaj.org/article/4d3414a848444bc889c08873d32a369f
Publikováno v:
Frontiers in Plant Science, Vol 13 (2022)
Estimating the crop leaf area index (LAI) accurately is very critical in agricultural remote sensing, especially in monitoring crop growth and yield prediction. The development of unmanned aerial vehicles (UAVs) has been significant in recent years a
Externí odkaz:
https://doaj.org/article/9c8ca166a9024783862d92e200469d5c