Zobrazeno 1 - 10
of 1 330
pro vyhledávání: '"van der Have, J. J."'
In this paper, we present port-Hamiltonian formulations of the incompressible Euler equations with a free surface governed by surface tension and gravity forces, modelling e.g. capillary and gravity waves and the evolution of droplets in air. Three s
Externí odkaz:
http://arxiv.org/abs/2305.00377
We develop entropy dissipative higher order accurate local discontinuous Galerkin (LDG) discretizations coupled with Diagonally Implicit Runge-Kutta (DIRK) methods for nonlinear degenerate parabolic equations with a gradient flow structure. Using the
Externí odkaz:
http://arxiv.org/abs/2301.01427
A port-Hamiltonian (pH) system formulation is a geometrical notion used to formulate conservation laws for various physical systems. The distributed parameter port-Hamiltonian formulation models infinite dimensional Hamiltonian dynamical systems that
Externí odkaz:
http://arxiv.org/abs/2212.07041
Publikováno v:
Optics Express 29, 41023 (2021)
Since thin-film silicon solar cells have limited optical absorption, we explore the effect of a nanostructured back reflector to recycle the unabsorbed light. As a back reflector we investigate a 3D photonic band gap crystal made from silicon that is
Externí odkaz:
http://arxiv.org/abs/2106.15851
Autor:
van der Bij, J. J.
We describe the non-minimal Standard Model, consisting of minimalistic extensions of the Standard Model, which for all we know is the theory of the universe, able to describe all of the universe from the beginning of time. Extensions discussed are an
Externí odkaz:
http://arxiv.org/abs/2104.12474
Publikováno v:
IMA Journal of Numerical Analysis, 2022
An error analysis of a mixed discontinuous Galerkin (DG) method with Brezzi numerical flux for the time-harmonic Maxwell equations with minimal smoothness requirements is presented. The key difficulty in the error analysis for the DG method is that t
Externí odkaz:
http://arxiv.org/abs/2009.06519
Publikováno v:
SIAM. J. Sci. Comput. 41 (2019) A1041-A1065
We present new and efficient quadrature rules for computing the stiffness matrices of mass-lumped tetrahedral elements for wave propagation modelling. These quadrature rules allow for a more efficient implementation of the mass-lumped finite element
Externí odkaz:
http://arxiv.org/abs/1905.10104
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
SIAM Journal on Scientific Computing, 2019
Currently, nearly all positivity preserving discontinuous Galerkin (DG) discretizations of partial differential equations are coupled with explicit time integration methods. Unfortunately, for many problems this can result in severe time-step restric
Externí odkaz:
http://arxiv.org/abs/1811.08620