Zobrazeno 1 - 10
of 111
pro vyhledávání: '"van der Geer, G."'
Autor:
van der Geer, G., Katsura, T.
We study invariants of Calabi-Yau varieties in positive characteristic, especially the height of the Artin-Mazur formal group. We illustrate these results by Calabi-Yau varieties of Fermat and Kummer type.
Comment: Latex, 15 pages
Comment: Latex, 15 pages
Externí odkaz:
http://arxiv.org/abs/math/0302023
Autor:
van der Geer, G., Katsura, T.
We introduce an invariant of varieties in positive characteristic which generalizes the a-number of an abelian variety. We calculate it in some examples and discuss its meaning for moduli.
Comment: Latex, 11 pages
Comment: Latex, 11 pages
Externí odkaz:
http://arxiv.org/abs/math/0201246
Autor:
van der Geer, G., Katsura, T.
In this paper we consider the stratification on the moduli space of principally polarized abelian surfaces in characteristic $p>0$ defined by the height of the formal group associated to $H^2(X,O_X)$. We compute the cycle classes of the strata and co
Externí odkaz:
http://arxiv.org/abs/math/9912169
Autor:
van der Geer, G., Katsura, T.
In this paper we give a characterization of the height of K3 surfaces in positive characteristic. This enables us to calculate the cycle classes of the loci in families of K3 surfaces where the height is at least h. The formulas for such loci can be
Externí odkaz:
http://arxiv.org/abs/math/9910061
Autor:
van der Geer, G., van der Vlugt, M.
We use the relations between quadrics, trace codes and algebraic curves to construct algebraic curves over finite fields with many points and to compute generalized Hamming weights of codes.
Comment: 14 pages, Plain TeX
Comment: 14 pages, Plain TeX
Externí odkaz:
http://arxiv.org/abs/alg-geom/9412011
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Faber, C.F., van der Geer, G., Cléry, Fabien, Sub Fundamental Mathematics, Fundamental mathematics
Publikováno v:
Mathematics of Computation, 88(319), 2423. American Mathematical Society
Mathematics of Computation, 88(319), 2423-2441. American Mathematical Society
Mathematics of Computation
Mathematics of Computation, 88(319), 2423-2441. American Mathematical Society
Mathematics of Computation
We use covariants of binary sextics to describe the structure of modules of scalar-valued or vector-valued Siegel modular forms of degree 2 with character, over the ring of scalar-valued Siegel modular forms of even weight. For a modular form defined
Publikováno v:
Rationality of Varieties, 129-146
STARTPAGE=129;ENDPAGE=146;TITLE=Rationality of Varieties
Rationality of varieties
Progress in mathematics
Rationality of Varieties ISBN: 9783030754204
STARTPAGE=129;ENDPAGE=146;TITLE=Rationality of Varieties
Rationality of varieties
Progress in mathematics
Rationality of Varieties ISBN: 9783030754204
We prove that the moduli stacks of marked and labelled Hodge-special Gushel-Mukai fourfolds are isomorphic. As an application, we construct rational maps from the stack of Hodge-special Gushel-Mukai fourfolds of discriminant $d$ to the moduli space o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::870b65feec1060847c89f5e89eda8746
http://arxiv.org/abs/2002.04248
http://arxiv.org/abs/2002.04248
Publikováno v:
Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds & Picard-Fuchs Equations, 81-110
STARTPAGE=81;ENDPAGE=110;TITLE=Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds & Picard-Fuchs Equations
STARTPAGE=81;ENDPAGE=110;TITLE=Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds & Picard-Fuchs Equations
We report on a joint project in experimental mathematics with Jonas Bergstrom and Carel Faber where we obtain information about modular forms by counting curves over finite fields.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::3cdb711dd4453a07bf946ee1e5869a67
https://dare.uva.nl/personal/pure/en/publications/exploring-modular-forms-and-the-cohomology-of-local-systems-on-moduli-spaces-by-counting-points(4c3ac9e6-be8c-467c-ab76-2007deb22295).html
https://dare.uva.nl/personal/pure/en/publications/exploring-modular-forms-and-the-cohomology-of-local-systems-on-moduli-spaces-by-counting-points(4c3ac9e6-be8c-467c-ab76-2007deb22295).html
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.