Zobrazeno 1 - 10
of 21
pro vyhledávání: '"van Hoften, Pol"'
We construct functorial Igusa stacks for all Hodge-type Shimura varieties, proving a conjecture of Scholze and extending earlier results of the fourth-named author for PEL-type Shimura varieties. Using the Igusa stack, we construct a sheaf on $\mathr
Externí odkaz:
http://arxiv.org/abs/2408.01348
We prove a conjecture of Pappas and Rapoport about the existence of ''canonical'' integral models of Shimura varieties of Hodge type with quasi-parahoric level structure at a prime $p$. For these integral models, we moreover show uniformization of is
Externí odkaz:
http://arxiv.org/abs/2403.19771
Autor:
van Hoften, Pol, Sempliner, Jack
We study the Piatetski-Shapiro construction, which takes a totally real field F and a Shimura datum (G,X) and produces a new Shimura datum (H,Y). If F is Galois, then the Galois group Gamma of F acts on (H,Y), and we show that the Gamma-fixed points
Externí odkaz:
http://arxiv.org/abs/2403.10653
Autor:
van Hoften, Pol1 p.van.hoften@vu.nl
Publikováno v:
Forum of Mathematics, Pi. 11/6/2024, Vol. 12, p1-67. 67p.
Autor:
D'Addezio, Marco, van Hoften, Pol
We prove the Hecke orbit conjecture of Chai--Oort for Shimura varieties of Hodge type at primes of good reduction, under a mild assumption on the size of the prime. Our proof uses a new generalisation of Serre--Tate coordinates for deformation spaces
Externí odkaz:
http://arxiv.org/abs/2205.10344
Autor:
van Hoften, Pol
Publikováno v:
Alg. Number Th. 18 (2024) 847-898
We prove the ordinary Hecke orbit conjecture for Shimura varieties of Hodge type at primes of good reduction. We make use of the global Serre-Tate coordinates of Chai as well as recent results of D'Addezio about the $p$-adic monodromy of isocrystals.
Externí odkaz:
http://arxiv.org/abs/2112.12422
Autor:
van Hoften, Pol, Xiao, Luciena Xiao
We determine the irreducible components of Igusa varieties for Shimura varieties of Hodge type and use that to compute the irreducible components of central leaves. In particular, we show that a strong version of the discrete Hecke orbit conjecture i
Externí odkaz:
http://arxiv.org/abs/2102.09870
Autor:
van Hoften, Pol
Publikováno v:
Forum of Mathematics, Pi , Volume 12 , 2024 , e20
We study the mod $p$-points of the Kisin--Pappas integral models of Shimura varieties of Hodge type with parahoric level. We show that if the group is quasi-split, then every isogeny class contains the reduction of a CM point, proving a conjecture of
Externí odkaz:
http://arxiv.org/abs/2010.10496
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
van Hoften, Pol
Publikováno v:
Math. Z. 299, 2029-2061 (2021)
We study the Picard-Lefschetz formula for the Siegel modular threefold of paramodular level and prove the weight-monodromy conjecture for its middle degree inner cohomology with arbitrary automorphic coefficients. We give some applications to the Lan
Externí odkaz:
http://arxiv.org/abs/1906.04008