Zobrazeno 1 - 10
of 1 443
pro vyhledávání: '"unbounded domain"'
Autor:
Zhang Zhang, Yao Xiaobin
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 823-841 (2024)
In this article, we consider the asymptotic behavior of solutions for the Kirchhoff-type reaction–diffusion equations driven by a nonlinear colored noise defined on unbounded domains. We prove the existence and uniqueness of pullback random attract
Externí odkaz:
https://doaj.org/article/69d5da93ffd44283873bba0da84f8059
Publikováno v:
Mathematical Biosciences and Engineering, Vol 21, Iss 4, Pp 5456-5498 (2024)
This paper is concerned with invariant measures of fractional stochastic delay Ginzburg-Landau equations on the entire space $ \mathbb{R}^n $. We first derive the uniform estimates and the mean-square uniform smallness of the tails of solutions in co
Externí odkaz:
https://doaj.org/article/0c851dedc9a244d78a6af5ab6d3711ef
Autor:
Gwinner Joachim
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 121-140 (2024)
This article is devoted to the existence of optimal controls in various control problems associated with a novel nonlinear interface problem on an unbounded domain with non-monotone set-valued transmission conditions. This interface problem involves
Externí odkaz:
https://doaj.org/article/4d47c97b822643bc8af81e5d42f436e5
Autor:
Özlem Kaytmaz
Publikováno v:
AIMS Mathematics, Vol 9, Iss 4, Pp 9184-9194 (2024)
In this paper, we deal with an inverse problem of determining the source function in a kinetic equation that is considered in an unbounded domain with Cauchy data. We prove the uniqueness of the solution of an inverse problem by means of a pointwise
Externí odkaz:
https://doaj.org/article/6d1f7fec7f704d95be2aa7d964117570
Autor:
Ruonan Liu, Tomás Caraballo
Publikováno v:
AIMS Mathematics, Vol 9, Iss 4, Pp 8020-8042 (2024)
In this paper, the asymptotic behavior of solutions to a fractional stochastic nonlocal reaction-diffusion equation with polynomial drift terms of arbitrary order in an unbounded domain was analysed. First, the stochastic equation was transformed int
Externí odkaz:
https://doaj.org/article/10cb269b0ed84b65a4eeaf580fc4f554
Autor:
Cavalcanti, M.M. a, 1, Domingos Cavalcanti, V.N. a, 2, Gonzalez Martinez, Victor H. b, Druziani Marchiori, Talita a, 3, Vicente, A. c, ⁎
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 September 2024 537(1)
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 30537-30561 (2023)
In this paper, we consider the asymptotic behavior of nonclassical diffusion equations with hereditary memory and time-dependent perturbed parameter on whole space $ \mathbb{R}^n $. Under a general assumption on the memory kernel $ k $, the existence
Externí odkaz:
https://doaj.org/article/b77df313eb9f4273b8193eb4d28b97f3
Autor:
Mikhail Borsuk, Damian Wiśniewski
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2023, Iss 33, Pp 1-20 (2023)
In this paper we consider the Dirichlet problem for quasi-linear second-order elliptic equation with the $m(x)$-Laplacian and the strong nonlinearity on the right side in an unbounded cone-like domain. We study the behavior of weak solutions to the p
Externí odkaz:
https://doaj.org/article/e4b77c1a93644e2689dc1e024abfd1eb
Publikováno v:
Scientific African, Vol 23, Iss , Pp e02108- (2024)
In this paper, by using the Ge and Ren extension of coincidence degree theory, we established the existence of a solution for a resonant mixed fractional order p-Laplacian boundary value problem (BVP) on the half-line. In the process, we solved the c
Externí odkaz:
https://doaj.org/article/5deddec6082e43dcadf769a2ff3124f2
Publikováno v:
Journal of Optimization, Differential Equations and Their Applications, Vol 31, Iss 2, Pp 67-88 (2023)
We research the well-posedness of the problem without initial condition for nonlinear parabolic variational inequalities with variable time-delay. To justify our results, we impose some assumptions on the solution behavior and growth of the data-in a
Externí odkaz:
https://doaj.org/article/b01d0ee2b5bc4821a5ea9e94d83632f3