Zobrazeno 1 - 4
of 4
pro vyhledávání: '"tumor region classification"'
Autor:
Konstantinos Zormpas-Petridis, Rosa Noguera, Daniela Kolarevic Ivankovic, Ioannis Roxanis, Yann Jamin, Yinyin Yuan
Publikováno v:
Frontiers in Oncology, Vol 10 (2021)
High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global
Externí odkaz:
https://doaj.org/article/7d8959a066794eb38b9bd4f6f20abf85
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Oncology
r-INCLIVA. Repositorio Institucional de Producción Científica de INCLIVA
instname
r-INCLIVA. Repositorio Institucional de Producción Científica de INCLIVA
instname
High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=RECOLECTA___::cd038d5324dc34c839a2ed6d3ae1aaea
https://www.fundanet.incliva.es/publicaciones/ProdCientif/PublicacionFrw.aspx?id=15581
https://www.fundanet.incliva.es/publicaciones/ProdCientif/PublicacionFrw.aspx?id=15581
Autor:
Konstantinos Zormpas-Petridis, Rosa Noguera, Daniela Kolarevic Ivankovic, Ioannis Roxanis, Yann Jamin, Yinyin Yuan
Publikováno v:
Frontiers in Oncology
Frontiers in Oncology, Vol 10 (2021)
Frontiers in Oncology, Vol 10 (2021)
High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global