Zobrazeno 1 - 10
of 1 524
pro vyhledávání: '"total domination"'
Autor:
Sawyer Osborn, Ping Zhang
Publikováno v:
Contributions to Mathematics, Vol 10, Pp 40-47 (2024)
Externí odkaz:
https://doaj.org/article/70197bd9bbd4478fbbb8438804f6883e
Publikováno v:
Electronic Journal of Mathematics, Vol 7, Pp 58-68 (2024)
Externí odkaz:
https://doaj.org/article/810fd09ea6994d5a80726251f236c8c2
Autor:
Nuttawoot Nupo, Chollawat Pookpienlert
Publikováno v:
AIMS Mathematics, Vol 9, Iss 6, Pp 14558-14573 (2024)
For a set $ X $ and a nonempty subset $ Y $ of $ X $, denote by $ T(X) $ the full transformation semigroup under the composition whose elements are functions on $ X $. Let $ Fix(X, Y) $ be the subsemigroup of $ T(X) $ containing functions $ \alpha\in
Externí odkaz:
https://doaj.org/article/80909ce6f2134a988cb0c27077a5aaff
Autor:
Teresa W. Haynes, Michael A. Henning
Publikováno v:
Opuscula Mathematica, Vol 44, Iss 4, Pp 543-563 (2024)
A graph \(G\) whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. We give constructions that yield infinite families of graphs that are TI-graphs, as well as constructions that yield
Externí odkaz:
https://doaj.org/article/e6960c46f3584095ba9a4a52f062eff1
Publikováno v:
Axioms, Vol 13, Iss 11, p 792 (2024)
A k-total dominating set is a set of vertices such that all vertices in the graph, including the vertices in the dominating set themselves, have at least k neighbors in the dominating set. The k-total domination number γkt(G) is the cardinality of t
Externí odkaz:
https://doaj.org/article/17948ee6a71a4c39994a4294673f3def
Publikováno v:
Mathematica Bohemica, Vol 148, Iss 4, Pp 555-560 (2023)
Let $G$ be a $3$-connected triangulated disc of order $n$ with the boundary cycle $C$ of the outer face of $G$. Tokunaga (2013) conjectured that $G$ has a dominating set of cardinality at most $\frac14(n+2)$. This conjecture is proved in Tokunaga (20
Externí odkaz:
https://doaj.org/article/0179b0e5057d4c41a2e828f60ebff4e8
Publikováno v:
Entropy, Vol 26, Iss 10, p 844 (2024)
The domination problem and three of its variants (total domination, 2-domination, and secure domination) are considered. These problems have various real-world applications, including error correction codes, ad hoc routing for wireless networks, and
Externí odkaz:
https://doaj.org/article/103c2a5e30a74dd5814a3cac79b524a4
Publikováno v:
AIMS Mathematics, Vol 8, Iss 4, Pp 9506-9519 (2023)
A vertex set $ S $ of a graph $ G $ is called a double total dominating set if every vertex in $ G $ has at least two adjacent vertices in $ S $. The double total domination number $ \gamma_{\times 2, t}(G) $ of $ G $ is the minimum cardinality over
Externí odkaz:
https://doaj.org/article/6452706fd46e4f7ba3791eb243c991a1
Publikováno v:
AIMS Mathematics, Vol 7, Iss 11, Pp 19629-19640 (2022)
Let $ G $ be a graph with the vertex set $ V(G) $. A set $ D\subseteq V(G) $ is a total k-dominating set if every vertex $ v\in V(G) $ has at least $ k $ neighbours in $ D $. The total k-domination number $ \gamma_{kt}(G) $ is the cardinality of the
Externí odkaz:
https://doaj.org/article/34377a3ace22422aba25158957651085