Zobrazeno 1 - 10
of 133
pro vyhledávání: '"three critical points theorem"'
Autor:
Jung-Hyun Bae, Yun-Ho Kim
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 18,, Pp 1-16 (2019)
In this article, we establish the existence of three weak solutions for elliptic equations associated to the fractional Laplacian $$\displaylines{ (-\Delta)^s u = \lambda f(x,u) \quad \text{in } \Omega,\cr u= 0\quad \text{on } \mathbb{R}^N\setmin
Externí odkaz:
https://doaj.org/article/852ceec46bf44793bd3aec69d9ab9b46
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ouaro Stanislas, Zoungrana Malick
Publikováno v:
Nonautonomous Dynamical Systems, Vol 5, Iss 1, Pp 76-88 (2018)
In this article, we prove the existence and multiplicity of solutions to discrete inclusions with the p(k)-Laplace type equations. We are interested in the existence of three solutions with the aid of linking arguments and using a three critical poin
Externí odkaz:
https://doaj.org/article/ebdf52813a4b4710a5225a87927a8afe
Publikováno v:
Opuscula Mathematica, Vol 37, Iss 3, Pp 353-379 (2017)
This paper is devoted to the study of the existence of at least three classical solutions for a second-order multi-point boundary value problem with impulsive effects. We use variational methods for smooth functionals defined on reflexive Banach spac
Externí odkaz:
https://doaj.org/article/65d1e655a31c4e29819d5a1fd0a693ff
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 33, Iss 2, Pp 121-131 (2015)
By applaying the Ricceri's three critical points theorem, we show the existence of at least three solutions to the following elleptic problem: \begin{equation*} \begin{gathered} -div[a(x, \nabla u)]+|u|^{p(x)-2}u=\lambda f(x,u), \quad \text{in }\Om
Externí odkaz:
https://doaj.org/article/c6317dd67e0d4ad4962e1d1ca7c561b7
Autor:
Nguyen Thanh Chung, Hoang Quoc Toan
Publikováno v:
Le Matematiche, Vol 69, Iss 2, Pp 171-182 (2014)
In this article, we use the three critical points theorem by G. Bonanno [3] in order to investigate the multiplicity of solutions for some nonlocal degenerate problems.
Externí odkaz:
https://doaj.org/article/8f3b6286b3a4497ab0cc788d1a958858
Autor:
Nguyen Thanh Chung
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 32, Iss 1, Pp 289-298 (2014)
This article deals with the multiplicity of solutions for the following Kirchhoff type problem $$ \begin{cases} \begin{array}{rlll} -M\left(\int_\Omega |\nabla u|^2\,dx\right)\Delta u &= & \frac{\mu}{|x|^2}a(x)u + \lambda f(u) & \text{ in } \Omega,\\
Externí odkaz:
https://doaj.org/article/7d97ab1b699c48ad932c6134e18349b4
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 139,, Pp 1-10 (2013)
In this article, we show the existence of at least three solutions to a Navier boundary problem involving the p(x)-biharmonic operator. The technical approach is mainly base on a three critical points theorem by Ricceri.
Externí odkaz:
https://doaj.org/article/5246fcf277e347b88a679372ff542ae6
Autor:
Paweł Goncerz
Publikováno v:
Opuscula Mathematica, Vol 32, Iss 3, Pp 473-486 (2012)
We consider a quasilinear elliptic problem of the type \(-\Delta_p u = \lambda (f(u)+\mu g(u))\) in \(\Omega\), \(u|_{\partial \Omega} =0\), where \(\Omega \in \mathbb{R}^N\) is an open and bounded set, \(f\), \(g\) are continuous real functions on \
Externí odkaz:
https://doaj.org/article/c629d85ebfa24fa9a1aa52923d0f7a0c