Zobrazeno 1 - 10
of 119
pro vyhledávání: '"the inertia forms"'
Autor:
Zekeriya Duru
Publikováno v:
Osmanli Bilimi Arastirmalari, Vol 20, Iss 1, Pp 47-91 (2019)
Kerim Erim (1894-1952), yasaminin ilk yarisi Osmanli Imparatorlugunun son yillarina, ikinci yarisi ise Turkiye Cumhuriyeti’nin ilk otuz yilina yayilmis bir Turk matematikcidir. Erim’in matematik calismalari ile onunla ayni yillarda yasamis Turk m
Externí odkaz:
https://doaj.org/article/4ee688be56324c1bb5428517004a95e8
Autor:
Abdesselam, Abdelmalek
The classical multidimensional resultant can be defined as the, suitably normalized, generator of a projective elimination ideal in the ring of universal coefficients. This is the approach via the so-called inertia forms or Tr\"{a}gheitsformen. Using
Externí odkaz:
http://arxiv.org/abs/2407.04429
Autor:
DURU, Zekeriya
Publikováno v:
Volume: 20, Issue: 1 47-91
Osmanlı Bilimi Araştırmaları
Osmanlı Bilimi Araştırmaları
Kerim Erim (1894-1952) was a Turkish mathematicianwhose earlier life overlapped with the last decades of the Ottoman Empire,while the second half of his life coincided with the early decades of theTurkish Republic. A comparison of his works with thos
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=tubitakulakb::c5c742f5d0bed3b8496438f9a13b325f
https://dergipark.org.tr/tr/pub/iuoba/issue/42241/468108
https://dergipark.org.tr/tr/pub/iuoba/issue/42241/468108
Autor:
Laurent Busé, Jean-Pierre Jouanolou
Publikováno v:
Mathematics in Computer Science
Mathematics in Computer Science, Springer, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. ⟨10.1007/s11786-014-0188-7⟩
Mathematics in Computer Science, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. ⟨10.1007/s11786-014-0188-7⟩
Mathematics in Computer Science, Springer, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. ⟨10.1007/s11786-014-0188-7⟩
Mathematics in Computer Science, 2014, Special Issue in Computational Algebraic Geometry, 8 (2), pp.175-234. ⟨10.1007/s11786-014-0188-7⟩
In this paper, the discriminant scheme of homogeneous polynomials is studied in two particular cases: the case of a single homogeneous polynomial and the case of a collection of n − 1 homogeneous polynomials in $${n\geqslant 2}$$ variables. In both
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jean-Pierre Jouanolou
Publikováno v:
Journal of Symbolic Computation. 44:864-871
Given r>=n quasi-homogeneous polynomials in n variables, the existence of a certain duality is shown and explicited in terms of generalized Morley forms. This result, that can be seen as a generalization of [3,corollary 3.6.1.4] (where this duality i
Autor:
Laurent Busé
Publikováno v:
Journal of Algebra
Journal of Algebra, 2009, 321 (8), pp.2317-2344. ⟨10.1016/j.jalgebra.2009.01.030⟩
Journal of Algebra, Elsevier, 2009, 321 (8), pp.2317-2344. ⟨10.1016/j.jalgebra.2009.01.030⟩
Journal of Algebra, 2009, 321 (8), pp.2317-2344. ⟨10.1016/j.jalgebra.2009.01.030⟩
Journal of Algebra, Elsevier, 2009, 321 (8), pp.2317-2344. ⟨10.1016/j.jalgebra.2009.01.030⟩
Given a parametrization of a rational plane algebraic curve C, some explicit adjoint pencils on C are described in terms of determinants. Moreover, some generators of the Rees algebra associated to this parametrization are presented. The main ingredi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5aa78bed11d05cbd5f9b183775853f4
https://inria.hal.science/inria-00198350v2/file/tfmbb.pdf
https://inria.hal.science/inria-00198350v2/file/tfmbb.pdf
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jouanolou, Jean-Pierre1 jouanolo@math.u-strasbg.fr
Publikováno v:
Journal of Symbolic Computation. Jul2009, Vol. 44 Issue 7, p864-871. 8p.
Autor:
Busé, Laurent1 Laurent.Buse@inria.fr
Publikováno v:
Journal of Algebra. Apr2009, Vol. 321 Issue 8, p2317-2344. 28p.