Zobrazeno 1 - 10
of 20
pro vyhledávání: '"t-tough graph."'
Autor:
Nhu An Do, Quang Tuan Nguyen
Publikováno v:
Tạp chí Khoa học Đại học Đà Lạt, Vol 14, Iss 3 (2024)
Let G be an undirected simple graph on \(n \geq 3\) vertices with the degree sum of any two nonadjacent vertices in G equal to \(n - 2\). We determine the condition for G to be a Hamiltonian graph.
Externí odkaz:
https://doaj.org/article/ed4ab2ddb6464be1a7a3e8b23486946b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1601-1605 (2020)
A connected even [2,2s]{[}2,2s]-factor of a graph G is a connected factor with all vertices of degree i(i=2,4,…,2s)i(i=2,4,\ldots ,2s), where s≥1s\ge 1 is an integer. In this paper, we show that a k+1s+2\tfrac{k+1}{s+2}-tough k-tree has a connect
Externí odkaz:
https://doaj.org/article/375d3159e9b044e79dbebf4880dff835
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1601-1605 (2020)
A connected even [ 2 , 2 s ] {[}2,2s] -factor of a graph G is a connected factor with all vertices of degree i ( i = 2 , 4 , … , 2 s ) i(i=2,4,\ldots ,2s) , where s ≥ 1 s\ge 1 is an integer. In this paper, we show that a k + 1 s + 2 \tfrac{k+1}{s
Publikováno v:
Journal of graph theory. 75(3):244-255
The toughness of a (noncomplete) graph G is the minimum value of t for which there is a vertex cut A whose removal yields |A|/t components. Determining toughness is an NP-hard problem for general input graphs. The toughness conjecture of Chvátal, wh
Publikováno v:
Networks. 33(33):233-238
Publikováno v:
Graphs and combinatorics, 22(10/1):10.1007/s00373-006-0649-0, 1-35. Springer
In this survey we have attempted to bring together most of the results and papers that deal with toughness related to cycle structure. We begin with a brief introduction and a section on terminology and notation, and then try to organize the work int
Publikováno v:
Journal of graph theory, 75(3), 244-255. Wiley-Liss Inc.
The toughness of a (noncomplete) graph G is the minimum value of t for which there is a vertex cut A whose removal yields |A|/t components. Determining toughness is an NP-hard problem for general input graphs. The toughness conjecture of Chvátal, wh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::286fda6f835bfbe878bf192cb63fad90
https://research.utwente.nl/en/publications/1f432ca2-587e-4e8f-b715-3721ba033df4
https://research.utwente.nl/en/publications/1f432ca2-587e-4e8f-b715-3721ba033df4
Publikováno v:
Networks, 33(33), 233-238. Wiley-Liss Inc.
University of Twente Research Information (Pure Portal)
University of Twente Research Information (Pure Portal)
Let G be a graph, and let t 0 be a real number. Then G is t-tough if t!(G − S) jSj for all S V (G) with !(G − S) > 1, where !(G − S) denotes the number of components of G − S. The toughness of G, denoted by (G), is the maximum value of t for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::452266d9466759043a30c95364952f2b
https://research.utwente.nl/en/publications/497d0139-ecea-4cf8-973c-fe8a6df1da45
https://research.utwente.nl/en/publications/497d0139-ecea-4cf8-973c-fe8a6df1da45