Zobrazeno 1 - 10
of 696
pro vyhledávání: '"synchronizing word"'
It was conjectured by \v{C}ern\'y in 1964, that a synchronizing DFA on $n$ states always has a synchronizing word of length at most $(n-1)^2$, and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all DFAs reach
Externí odkaz:
http://arxiv.org/abs/1801.10436
It was conjectured by \v{C}ern\'y in 1964, that a synchronizing DFA on $n$ states always has a shortest synchronizing word of length at most $(n-1)^2$, and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all D
Externí odkaz:
http://arxiv.org/abs/1703.07618
Autor:
Trahtman, A. N.
A word w of letters on edges of underlying graph Gamma of deterministic finite automaton (DFA) is called the synchronizing word if w sends all states of the automaton to a unique state. J. Cerny discovered in 1964 a sequence of n-state complete DFA p
Externí odkaz:
http://arxiv.org/abs/1405.2435
Autor:
Trahtman, A. N.
A word $w$ is called synchronizing (recurrent, reset, magic, directable) word of deterministic finite automaton (DFA) if $w$ sends all states of the automaton to a unique state. In 1964 Jan \v{C}erny found a sequence of n-state complete DFA possessin
Externí odkaz:
http://arxiv.org/abs/1104.2409
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Drewes, F.; Martín-Vide, C.; Truthe, B. (ed.), Language and Automata Theory and Applications: 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings, pp. 249-260
Drewes, F.; Martín-Vide, C.; Truthe, B. (ed.), Language and Automata Theory and Applications: 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings, 249-260. Cham : Springer International Publishing
STARTPAGE=249;ENDPAGE=260;ISSN=0302-9743;TITLE=Drewes, F.; Martín-Vide, C.; Truthe, B. (ed.), Language and Automata Theory and Applications: 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings
Language and Automata Theory and Applications-11th International Conference, LATA 2017, Proceedings: 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings, 249-260
STARTPAGE=249;ENDPAGE=260;TITLE=Language and Automata Theory and Applications-11th International Conference, LATA 2017, Proceedings
Language and Automata Theory and Applications ISBN: 9783319537320
LATA
Drewes, F.; Martín-Vide, C.; Truthe, B. (ed.), Language and Automata Theory and Applications: 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings, 249-260. Cham : Springer International Publishing
STARTPAGE=249;ENDPAGE=260;ISSN=0302-9743;TITLE=Drewes, F.; Martín-Vide, C.; Truthe, B. (ed.), Language and Automata Theory and Applications: 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings
Language and Automata Theory and Applications-11th International Conference, LATA 2017, Proceedings: 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings, 249-260
STARTPAGE=249;ENDPAGE=260;TITLE=Language and Automata Theory and Applications-11th International Conference, LATA 2017, Proceedings
Language and Automata Theory and Applications ISBN: 9783319537320
LATA
It was conjectured by Černý in 1964 that a synchronizing DFA on n states always has a shortest synchronizing word of length at most (n−1) 2 (n−1)2, and he gave a sequence of DFAs for which this bound is reached. In 2006 Trahtman conjectured tha
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
arXiv, 2018:1801.10436. Cornell University Library
International Journal of Foundations of Computer Science, 30(1), 29-60. World Scientific
International Journal of Foundations of Computer Science, 30, 1, pp. 29-60
International Journal of Foundations of Computer Science, 30, 29-60
International Journal of Foundations of Computer Science, 30(1), 29-60. World Scientific
International Journal of Foundations of Computer Science, 30, 1, pp. 29-60
International Journal of Foundations of Computer Science, 30, 29-60
It was conjectured by \v{C}ern\'y in 1964, that a synchronizing DFA on $n$ states always has a synchronizing word of length at most $(n-1)^2$, and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all DFAs reach
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dd10b57b950cb6cd7e894c33deed61ef
https://doi.org/10.48550/arxiv.1801.10436
https://doi.org/10.48550/arxiv.1801.10436
Publikováno v:
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science, World Scientific Publishing, 2011, 22 (2), pp.277-288. ⟨10.1142/S0129054111008039⟩
International Journal of Foundations of Computer Science, World Scientific Publishing, 2011, 22 (2), pp.277-288. ⟨10.1142/S0129054111008039⟩
Černý's conjecture asserts the existence of a synchronizing word of length at most (n - 1)2 for any synchronized n-state deterministic automaton. We prove a quadratic upper bound on the length of a synchronizing word for any synchronized n-state de
Autor:
BÉAL, MARIE-PIERRE1 beal@univ-mlv.fr, BERLINKOV, MIKHAIL V.2 berlm@mail.ru, PERRIN, DOMINIQUE1 perrin@univ-mlv.fr, Diekert, Volker, Nowotka, Dirk
Publikováno v:
International Journal of Foundations of Computer Science. Feb2011, Vol. 22 Issue 2, p277-288. 12p. 3 Diagrams.