Zobrazeno 1 - 10
of 10
pro vyhledávání: '"suelos cohesivos"'
Publikováno v:
Infraestructura Vial, Vol 24, Iss 43 (2022)
El presente artículo muestra el uso de la vinaza de Saccharum officinarum en la estabilización de suelos cohesivos. Estos suelos en mención son aquellos que presentan propiedades de resistencia muy pobres, lo cual impide que el suelo trabaje de un
Externí odkaz:
https://doaj.org/article/a31f3762cad3440fa53825b41f44dccc
Autor:
Andrés Nieto Leal, Victor N. Kaliakin
Publikováno v:
Ciencia e Ingeniería Neogranadina, Vol 26, Iss 1, Pp 21-39 (2016)
El comportamiento de suelos cohesivos sometidos a cargas cíclicas es afectado por diferentes factores; entre los más importantes se encuentran las características del suelo, estado actual e historia de esfuerzos, y condiciones específicas del ens
Externí odkaz:
https://doaj.org/article/587b15c8d82a4a4bacfe74ff5eabddb4
Autor:
Rubén Ángel Galindo-Aires
Publikováno v:
Lámpsakos, Vol 0, Iss 10, Pp 43-51 (2013)
Un suelo sometido a carga tangencial repetida se comporta de diferente manera al principio de la solicitación que después de un número de ciclos de carga. La respuesta del suelo es cada vez menos rígida, adquiriendo más deformación ante la mism
Externí odkaz:
https://doaj.org/article/cc6d9492c7b34f81af0de5372a6a7eea
Autor:
Galindo-Aires, Rubén Ángel
Publikováno v:
Lámpsakos, Iss 9, Pp 42-50 (2013)
La actuación de cargas sobre un suelo saturado, produce, en función de la naturaleza de la solicitación, del tipo de suelo y de las condiciones de drenaje del terreno, un incremento de la presión sobre el agua de los intersticios. Se ha abordado
Externí odkaz:
https://doaj.org/article/b61f54f1f1934690a3f29988c4a89174
Publikováno v:
Infraestructura Vial; Vol. 24 No. 43 (2022): Issue 43 January-December 2022-Continuous publication-Open Issue; 1-9
Infraestructura Vial; Vol. 24 Núm. 43 (2022): Revista 43, Enero-Diciembre 2022-Publicación continua-Número abierto; 1-9
Infraestructura Vial; Vol. 24 N.º 43 (2022): Revista 43, Enero-Diciembre 2022-Publicación continua-Número abierto; 1-9
Portal de Revistas UCR
Universidad de Costa Rica
instacron:UCR
Infraestructura Vial; Vol. 24 Núm. 43 (2022): Revista 43, Enero-Diciembre 2022-Publicación continua-Número abierto; 1-9
Infraestructura Vial; Vol. 24 N.º 43 (2022): Revista 43, Enero-Diciembre 2022-Publicación continua-Número abierto; 1-9
Portal de Revistas UCR
Universidad de Costa Rica
instacron:UCR
This article shows the use of Saccharum officinarum stillage in stabilizing cohesive soils. These soils in mention are those that present very poor resistance properties, which prevents the soil from working properly as part of a subgrade on a road.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::dd7356dbefe2d620216688ceb23dba20
https://revistas.ucr.ac.cr/index.php/vial/article/view/47995
https://revistas.ucr.ac.cr/index.php/vial/article/view/47995
Publikováno v:
Infraestructura Vial, Vol 24, Iss 43 (2022)
Infraestructura Vial, Volume: 24, Issue: 43, Pages: 73-82, Published: DEC 2022
Infraestructura Vial, Volume: 24, Issue: 43, Pages: 73-82, Published: DEC 2022
Resumen El presente artículo muestra el uso de la vinaza de Saccharum officinarum en la estabilización de suelos cohesivos. Estos suelos en mención son aquellos que presentan propiedades de resistencia muy pobres, lo cual impide que el suelo traba
Autor:
Molina Rincón, Tania Paola
Publikováno v:
Anandarajah, A. and Dafalias, Y. F. (1986). Bounding surface plasticity iii: aplication to anisotropic cohesive soils. Journal of Engineering Mechanics, ASCE, 112(12):1292–1318.
Atkinson, J. (1982). The mechanics of soil an introduction to critical state. MacGraw Hill
Chin, L. and Liu, C. (1997). Volumetric and undrained behaviors of taipei silty clay. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 9(4):665–678.
Dafalias, Y. and Popov, E. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3):173–192.
Dafalias, Y. F. (1986). An anisotropic critical state soil plasticity model. Mechanics research communications, 13(6).
Dafalias, Y. F. and Herrmann, L. R. (1980). A bounding burface soil plasticity model. In Pande, G. N. and Zienkiewicz, O. C., editors, Proceedings of the International Symposium on Soils Under Cyclic and Transient Loading, Swansea, UK, Balkema, Rotterdam
Dafalias, Y. F. and Herrmann, L. R. (1982a). Bounding surface formulation of soil plasticity. In Pande, G. N. and Zienkiewicz, O. C., editors, Soil Mechanics-Transient and Cyclic Loads, page 253–282, Chichester, UK. J. Wiley and Sons, Inc.
Dafalias, Y. F. and Herrmann, L. R. (1982b). A generalized bounding surface constitutive model for clays. In Yong, R. N. and Selig, E. T., editors, Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering, pages 78–95, Hollywood FL, New York. ASCE American Society of Civil Engineers.
Dafalias, Y. F. and Herrmann, L. R. (1986). Bounding surface plasticity ii: Application to isotropic cohesive soils. Journal of Engineering Mechanics, 112(12):1263–1291.
Dafalias, Y. F., Herrmann, L. R., and DeNatale, J. S. (1982). The bounding surface plasticity model for isotropic cohesive soils and its application at the grenoble workshop. In Gudehus, G., Darve, F., and Vardoulakis, I., editors, Results of the International Workshop on Constitutive Relations for Soils, page 273–287, Grenoble, France.
Fayad, P. H. (1986). Aspectsof the volumetric and undrained behavior of boston blue clay. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.
Gens, A. (1982). Stress–strain and strenght characteristics of a low plasticity clay. PhD thesis, Imperial College, London, U.K.
Helwany, S. (2007). Applied Soil Mechanics: with ABAQUS Applications. John Wiley & Sons.
Jiang, J., Ling, H. I., and Kaliakin, V. N. (2012). An associative and non-associative anisotropic bounding surface model for clay. Journal of Applied Mechanics, 79(3):1–10.
Jiang, J., Ling, H. I., Kaliakin, V. N., Zeng, X., and Hung, C. (2017). Evaluation of an anisotropic elastoplastic–viscoplastic bounding surface model for clays. Acta Geotechnica, 12:335–348.
Kaliakin, V. N. (1992). Calbr8, a simple computer program for assessing the idiosyncrasies of various constitutive models used to characterize soils. Report no, University of Delaware, Newark, DE, U.S.A.
Kaliakin, V. N. (2014). Details pertaining to bounding surface models for cohesive soils. Report no, University of Delaware, Newark, DE, U.S.A.
Kaliakin, V. N. and Dafalias, Y. F. (1989). Simplifications to the bounding surface model for cohesive soils. International journal for numerical and analytical methods in geomechanics, 13:91–100.
Kaliakin, V. N. and Nieto-Leal, A. (2013). Towards a generalized bunding surface model for cohesive soils. Poromechanics V Proceedings.
Ling, H. I., You, D., Kailakin, V. N., and Themelesis, N. J. (2002). Anisotropic elastoplastic bounding surface model for cohesive soils. Journal of Engineering Mechanics, 128(7):748– 758.
Nieto-Leal, A. (2007). Modelaci´on del comportamiento del suelo utilizando el modelo constitutivo mit s1. Master’s thesis, Universidad de los Andes, Bogot´a, Colombia.
Nieto-Leal, A. (2016). Generalized bounding surface model for cohesive soils: a novel formulation for monotonic and cyclic loading. PhD thesis, University of Delaware, Newark, DE, U.S.A.
Nieto-Leal, A. and Kaliakin, V. N. (2014). Improved shape hardening function for bounding surface model for cohesive soils. Journal of Rock Mechanics and Geotechnical Engineering, 6(4):328–337.
Nieto-Leal, A., Kaliakin, V. N., and Molina R., T. P. (2017). Performance of the generalized bounding surface model: Simulation of cohesive soils subjected to monotonic loading. In Geocongress 2018, Florida, Orlando, U.S.A. ASCE American Society of Civil Engineers.
Parry, R. H. G. and Nadarajah, V. (1973). Observations on laboratory prepared, lightly averconsolidated specimens of kaolin. G´otecnique, 24(3):345–358.
Roscoe, K. and Burland, J. (1968). On the generalized stress-strain behavior of wet clays. Engineering plasticity, pages 535–608.
Schofield, A. and Wroth, C. (1968). Critical state soil mechanics. European civil engineering series. McGraw-Hill.
Sheng, D., Sloan, S., and Yu, H. (2000). Aspects of finite element implementation of critical state models. Computational Mechanics, 26:185–196.
Sheu, W.-Y. (1984). Modeling of stress–strain–strength behavior of a clay under cyclic loading. PhD thesis, University of Colorado.
Stipho, A. S. A. (1978). Experimental and theoretical investigation of the behavior of anisotropically consolidated kaolin. PhD thesis, University College, Cardiff, U.K.
Repositorio UMNG
Universidad Militar Nueva Granada
instacron:Universidad Militar Nueva Granada
Atkinson, J. (1982). The mechanics of soil an introduction to critical state. MacGraw Hill
Chin, L. and Liu, C. (1997). Volumetric and undrained behaviors of taipei silty clay. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 9(4):665–678.
Dafalias, Y. and Popov, E. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3):173–192.
Dafalias, Y. F. (1986). An anisotropic critical state soil plasticity model. Mechanics research communications, 13(6).
Dafalias, Y. F. and Herrmann, L. R. (1980). A bounding burface soil plasticity model. In Pande, G. N. and Zienkiewicz, O. C., editors, Proceedings of the International Symposium on Soils Under Cyclic and Transient Loading, Swansea, UK, Balkema, Rotterdam
Dafalias, Y. F. and Herrmann, L. R. (1982a). Bounding surface formulation of soil plasticity. In Pande, G. N. and Zienkiewicz, O. C., editors, Soil Mechanics-Transient and Cyclic Loads, page 253–282, Chichester, UK. J. Wiley and Sons, Inc.
Dafalias, Y. F. and Herrmann, L. R. (1982b). A generalized bounding surface constitutive model for clays. In Yong, R. N. and Selig, E. T., editors, Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering, pages 78–95, Hollywood FL, New York. ASCE American Society of Civil Engineers.
Dafalias, Y. F. and Herrmann, L. R. (1986). Bounding surface plasticity ii: Application to isotropic cohesive soils. Journal of Engineering Mechanics, 112(12):1263–1291.
Dafalias, Y. F., Herrmann, L. R., and DeNatale, J. S. (1982). The bounding surface plasticity model for isotropic cohesive soils and its application at the grenoble workshop. In Gudehus, G., Darve, F., and Vardoulakis, I., editors, Results of the International Workshop on Constitutive Relations for Soils, page 273–287, Grenoble, France.
Fayad, P. H. (1986). Aspectsof the volumetric and undrained behavior of boston blue clay. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.
Gens, A. (1982). Stress–strain and strenght characteristics of a low plasticity clay. PhD thesis, Imperial College, London, U.K.
Helwany, S. (2007). Applied Soil Mechanics: with ABAQUS Applications. John Wiley & Sons.
Jiang, J., Ling, H. I., and Kaliakin, V. N. (2012). An associative and non-associative anisotropic bounding surface model for clay. Journal of Applied Mechanics, 79(3):1–10.
Jiang, J., Ling, H. I., Kaliakin, V. N., Zeng, X., and Hung, C. (2017). Evaluation of an anisotropic elastoplastic–viscoplastic bounding surface model for clays. Acta Geotechnica, 12:335–348.
Kaliakin, V. N. (1992). Calbr8, a simple computer program for assessing the idiosyncrasies of various constitutive models used to characterize soils. Report no, University of Delaware, Newark, DE, U.S.A.
Kaliakin, V. N. (2014). Details pertaining to bounding surface models for cohesive soils. Report no, University of Delaware, Newark, DE, U.S.A.
Kaliakin, V. N. and Dafalias, Y. F. (1989). Simplifications to the bounding surface model for cohesive soils. International journal for numerical and analytical methods in geomechanics, 13:91–100.
Kaliakin, V. N. and Nieto-Leal, A. (2013). Towards a generalized bunding surface model for cohesive soils. Poromechanics V Proceedings.
Ling, H. I., You, D., Kailakin, V. N., and Themelesis, N. J. (2002). Anisotropic elastoplastic bounding surface model for cohesive soils. Journal of Engineering Mechanics, 128(7):748– 758.
Nieto-Leal, A. (2007). Modelaci´on del comportamiento del suelo utilizando el modelo constitutivo mit s1. Master’s thesis, Universidad de los Andes, Bogot´a, Colombia.
Nieto-Leal, A. (2016). Generalized bounding surface model for cohesive soils: a novel formulation for monotonic and cyclic loading. PhD thesis, University of Delaware, Newark, DE, U.S.A.
Nieto-Leal, A. and Kaliakin, V. N. (2014). Improved shape hardening function for bounding surface model for cohesive soils. Journal of Rock Mechanics and Geotechnical Engineering, 6(4):328–337.
Nieto-Leal, A., Kaliakin, V. N., and Molina R., T. P. (2017). Performance of the generalized bounding surface model: Simulation of cohesive soils subjected to monotonic loading. In Geocongress 2018, Florida, Orlando, U.S.A. ASCE American Society of Civil Engineers.
Parry, R. H. G. and Nadarajah, V. (1973). Observations on laboratory prepared, lightly averconsolidated specimens of kaolin. G´otecnique, 24(3):345–358.
Roscoe, K. and Burland, J. (1968). On the generalized stress-strain behavior of wet clays. Engineering plasticity, pages 535–608.
Schofield, A. and Wroth, C. (1968). Critical state soil mechanics. European civil engineering series. McGraw-Hill.
Sheng, D., Sloan, S., and Yu, H. (2000). Aspects of finite element implementation of critical state models. Computational Mechanics, 26:185–196.
Sheu, W.-Y. (1984). Modeling of stress–strain–strength behavior of a clay under cyclic loading. PhD thesis, University of Colorado.
Stipho, A. S. A. (1978). Experimental and theoretical investigation of the behavior of anisotropically consolidated kaolin. PhD thesis, University College, Cardiff, U.K.
Repositorio UMNG
Universidad Militar Nueva Granada
instacron:Universidad Militar Nueva Granada
Conociendo las propiedades mecánicas y el comportamiento esfuerzo - deformación del suelo, se pueden hacer diseños más precisos donde se utilicen modelos constitutivos robustos, los cuales predicen de una mejor manera el comportamiento del suelo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8ce18e9b2ced9b47ff853bd4afde28b9
https://hdl.handle.net/10654/21143
https://hdl.handle.net/10654/21143
Autor:
Victor N. Kaliakin, Andrés Nieto Leal
Publikováno v:
Ciencia e Ingeniería Neogranadina, Vol 26, Iss 1 (2016)
Ciencia e Ingeniería Neogranadina, Vol 26, Iss 1, Pp 21-39 (2016)
Ciencia e Ingenieria Neogranadina; Vol. 26 No. 1 (2016); 21-39
Ciencia e Ingeniería Neogranadina; Vol. 26 Núm. 1 (2016); 21-39
Ciencia e Ingeniería Neogranadina; v. 26 n. 1 (2016); 21-39
Ciencia e Ingeniería Neogranadina, Vol 26, Iss 1, Pp 21-39 (2016)
Ciencia e Ingenieria Neogranadina; Vol. 26 No. 1 (2016); 21-39
Ciencia e Ingeniería Neogranadina; Vol. 26 Núm. 1 (2016); 21-39
Ciencia e Ingeniería Neogranadina; v. 26 n. 1 (2016); 21-39
The response of cohesive soils subjected to cyclic loading is affected by different factors; the most important are soil type, stress or consolidation history, and specific test conditions. To better understand the behavior of cohesive soils subjecte
Autor:
M.A. Llano-Serna, M.M. Farias
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
ResumenEste trabajo investiga la posibilidad de utilizar el método del punto material (MPM) para resolver problemas geotécnicos cuasiestáticos de pequeñas deformaciones y problemas dinámicos que presentan grandes distorsiones. Métodos tradicion
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0888ec126b3d5c5a75701b0446f72d83
Autor:
Nieto Leal, Andrés, Kaliakin, Victor N
Publikováno v:
Ciencia e Ingeniería Neogranadina, Volume: 26, Issue: 1, Pages: 21-39, Published: JAN 2016
The response of cohesive soils subjected to cyclic loading is affected by different factors; the most important are soil type, stress or consolidation history, and specific test conditions. To better understand the behavior of cohesive soils subjecte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______618::6cd41b2189c655ccd7758adca2bb6fa1
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-81702016000100002&lng=en&tlng=en
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-81702016000100002&lng=en&tlng=en