Zobrazeno 1 - 10
of 2 625
pro vyhledávání: '"sub-laplacian"'
Autor:
Mouayn, Zouhaïr
We rederive the expression of the integrated density of states for \ the sub-Laplacian on Heisenberg groups $\mathbb{H}_{n}$ by using its resolvent kernel.
Externí odkaz:
http://arxiv.org/abs/2412.11141
Autor:
Velasquez-Rodriguez, J. P.
Let $p>3$ be a prime number. In this note, we calculate explicitly the unitary dual and the matrix coefficients of the Engel group over the $p$-adic integers $\mathcal{B}_4(\mathbb{Z}_p)$. We use this information to calculate explicitly the spectrum
Externí odkaz:
http://arxiv.org/abs/2407.06289
In this paper, we introduce the spectral projection operators $\mathbb{P}_m$ on non-degenerate nilpotent Lie groups $\mathcal{N}$ of step two, associated to the joint spectrum of sub-Laplacian and derivatives in step two. We construct their kernels $
Externí odkaz:
http://arxiv.org/abs/2404.03378
Publikováno v:
AIMS Mathematics, Vol 9, Iss 9, Pp 25376-25395 (2024)
Let $ (M^{2n+1}, \theta) $ be a compact strictly pseudoconvex real hypersurfaces equipped with the pseudohermitian structure $ \theta $, and $ \lambda_{1} $ be the first positive eigenvalue of sub-Laplacian $ \Delta_{b} $ on $ (M^{2n+1}, \theta) $. I
Externí odkaz:
https://doaj.org/article/bce9107bed924b99b63d67d1d04f38ce
Autor:
Velasquez-Rodriguez, J. P.
Let $p>2$ be a prime number. In this short note, we calculate explicitly the unitary dual and the matrix coefficients of the Heisenberg group over the $p$-adic integers. As an application, we consider directional Vladimirov-Taibleson derivatives, and
Externí odkaz:
http://arxiv.org/abs/2401.07146
Autor:
Corni, Francesca, Ferrari, Fausto
In this paper we construct the fractional powers of the sub-Laplacian in Carnot groups through an analytic continuation approach. In addition, we characterize the powers of the fractional sub-Laplacian in the Heisenberg group, and as a byproduct we c
Externí odkaz:
http://arxiv.org/abs/2310.17387
Autor:
De, Subham
Publikováno v:
Int. Journal of Science and Research (IJSR), Vol. 12, Issue 12, Dec. 2023
This article presents a comprehensive study of \textit{Kirchhoff-type Critical Elliptic Equations} involving $p$-sub-Laplacian Operators on the \textit{Heisenberg Group} $\mathcal{H}_{n}$. It delves into the mathematical framework of Heisenberg Group
Externí odkaz:
http://arxiv.org/abs/2311.16205
Publikováno v:
Analysis and Geometry in Metric Spaces, Vol 12, Iss 1, Pp 135-159 (2024)
This article is devoted to the study of a critical Choquard-Kirchhoff pp-sub-Laplacian equation on the entire Heisenberg group Hn{{\mathbb{H}}}^{n}, where the Kirchhoff function KK can be zero at zero, i.e., the equation can be degenerate, and involv
Externí odkaz:
https://doaj.org/article/47c66eff3d844ef98e227b4973f2557f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.