Zobrazeno 1 - 10
of 1 508
pro vyhledávání: '"structured signal"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Bayesian Receiver Design for Grant-Free NOMA with Message Passing Based Structured Signal Estimation
Grant-free non-orthogonal multiple access (NOMA) is promising to achieve low latency massive access in Internet of Things (IoT) applications. In grant-free NOMA, pilot signals are often used for user activity detection (UAD) and channel estimation (C
Externí odkaz:
http://arxiv.org/abs/2003.01307
Autor:
Juhlin, Maria, Jakobsson, A.
Publikováno v:
In Signal Processing January 2023 202
Autor:
Soltanolkotabi, Mahdi
This paper concerns the problem of recovering an unknown but structured signal $x \in R^n$ from $m$ quadratic measurements of the form $y_r=||^2$ for $r=1,2,...,m$. We focus on the under-determined setting where the number of measurements is s
Externí odkaz:
http://arxiv.org/abs/1702.06175
Autor:
Bingquan Chen, Peng Shi, Hongsheng Li, Hongxiu Gao, Ruirong Wang, Peng Gao, Xufei Wu, Jun Yue
Publikováno v:
IEEE Photonics Journal, Vol 14, Iss 1, Pp 1-10 (2022)
This investigation is aiming at the development of a method for in-situ 3D imaging and reconstructions of objects in the rain. The proposed method is based on the use of monochromatic sinusoidal fringe pattern generated by the designed optical system
Externí odkaz:
https://doaj.org/article/76e9144e885a486dbb2be433cfb8a0ad
We study high-dimensional signal recovery from non-linear measurements with design vectors having elliptically symmetric distribution. Special attention is devoted to the situation when the unknown signal belongs to a set of low statistical complexit
Externí odkaz:
http://arxiv.org/abs/1609.01025
Publikováno v:
In Proceeding of 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)
In this paper, we develop a new framework for sensing and recovering structured signals. In contrast to compressive sensing (CS) systems that employ linear measurements, sparse representations, and computationally complex convex/greedy algorithms, we
Externí odkaz:
http://arxiv.org/abs/1508.04065
Autor:
Tropp, Joel A.
This chapter develops a theoretical analysis of the convex programming method for recovering a structured signal from independent random linear measurements. This technique delivers bounds for the sampling complexity that are similar with recent resu
Externí odkaz:
http://arxiv.org/abs/1405.1102