Zobrazeno 1 - 10
of 4 960
pro vyhledávání: '"strain rate sensitivity"'
Publikováno v:
Journal of Materials Research and Technology, Vol 33, Iss , Pp 9785-9790 (2024)
While simulations predict that local chemical order in multi-principal-element alloys (MPEAs) renders anomalous dislocation behaviors and thereby varied strain rate sensitivity (SRS) and creep behaviors, the experimental demonstration of such an effe
Externí odkaz:
https://doaj.org/article/ec51fde2612f4aa09fdd8d0ff01dcc05
Publikováno v:
Journal of Materials Research and Technology, Vol 33, Iss , Pp 6397-6407 (2024)
The current SAC(Sn–Ag–Cu) solder often experiences rapid degradation of mechanical properties at high temperatures and is prone to fracture under dynamic loads, thus failing to meet the interconnection requirements of industrial electronic produc
Externí odkaz:
https://doaj.org/article/f5ac1d20f4054b75b6fd1ef9ff8aaea8
Autor:
Hossein Momeni, sasan Ranjbar Motlagh
Publikováno v:
Iranian Journal of Materials Science and Engineering, Vol 21, Iss 3, Pp 1-9 (2024)
The present work deals with the hot deformation behavior of commercial Nb alloy C-103 and its microstructure evolution during uniaxial compression tests in the temperature range of 700-1100 °C and the strain rate range of 0.001-0.4 s-1. Strain rate
Externí odkaz:
https://doaj.org/article/d10722c4d08b40b8bd68e11c0e1f20e6
Autor:
Zi-Meng Wang, Yun-Fei Jia, Jia-Dong Cai, Yuan-Yuan Cui, Xiao Li, Xian-Cheng Zhang, Shan-Tung Tu
Publikováno v:
Journal of Materials Research and Technology, Vol 32, Iss , Pp 3269-3279 (2024)
Strain rate plays a nonnegligible role in the plastic deformation behavior of metallic materials with heterogeneous nanostructure, while little research focuses on the topic. In-situ compression tests at various strain rates were conducted on the mic
Externí odkaz:
https://doaj.org/article/3e43db5dca3b4dd1ac420d5d6d542775
Autor:
Kai Wang, Guanyu Huang, Xuetao Zou, Lanxi Feng, Zhuocheng Xie, Longhui Zhang, Shuang Qin, Xiaohu Yao
Publikováno v:
Journal of Materials Research and Technology, Vol 32, Iss , Pp 2345-2356 (2024)
Grain boundary (GB) strengthening of metallic materials faces limitations as grain sizes are reduced to the nanoscale, primarily due to the transition from the strengthening to the softening effects. Understanding the intrinsic mechanisms behind such
Externí odkaz:
https://doaj.org/article/8fa400a7b861484c9e7a38d25a964f6a
Publikováno v:
Journal of Magnesium and Alloys, Vol 12, Iss 8, Pp 3370-3393 (2024)
The mechanical properties of two main precipitating phases (LPSO and MgRE) and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method. A new is suggested for characterizing the elastic–plastic behavior, fracture toughness and s
Externí odkaz:
https://doaj.org/article/5d875a4d15d849dc9731aa5131721feb
Autor:
Hailong Xu, Li Huang, Wen Zhang, Jing Liang, Xiaohui Lin, Xin Zhang, Xuanqiao Gao, Jianfeng Li
Publikováno v:
Journal of Materials Research and Technology, Vol 30, Iss , Pp 3877-3885 (2024)
To study temperature and rate-dependent behaviors of molybdenum-rhenium (Mo–Re) alloys, compressive tests at variable temperatures and strain rates were conducted. After the same machining and thermal annealing processes, fully recrystallization ha
Externí odkaz:
https://doaj.org/article/764ae872eea14f01a3d6ae822d0abb0a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Punit Kumar Pandey, S. G. Ganpule
Publikováno v:
Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)
Perforation of the skin by fragment impact is a key determinant of the severity of an injury and incapacitation during modern asymmetric warfare. Computational models validated against experimental data are thus desired for simulating the responses o
Externí odkaz:
https://doaj.org/article/d9f32a253ab146bbbd53f59e62403ba5