Zobrazeno 1 - 10
of 1 098
pro vyhledávání: '"steklov eigenvalue problem"'
This paper introduces the application of the weak Galerkin (WG) finite element method to solve the Steklov eigenvalue problem, focusing on obtaining lower bounds of the eigenvalues. The noncomforming finite element space of the weak Galerkin finite e
Externí odkaz:
http://arxiv.org/abs/2305.16036
Autor:
Xiong, Changwei
Let $U\subset \mathbb{R}^n$ ($n\geq 3$) be an exterior Euclidean domain with smooth boundary $\partial U$. We consider the Steklov eigenvalue problem on $U$. First we derive a sharp lower bound for the first eigenvalue in terms of the support functio
Externí odkaz:
http://arxiv.org/abs/2304.11297
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 540-558 (2023)
Numerical methods for computing Steklov eigenvalues have attracted the attention of academia for their important physical background and wide applications. In this article we discuss the multigrid discretization scheme based on the shifted inverse it
Externí odkaz:
https://doaj.org/article/ce5142b7053b428db905941aa516fba2
Autor:
Li, Yanjun, Bi, Hai
In this paper, a discontinuous Galerkin finite element method of Nitsche's version for the Steklov eigenvalue problem in linear elasticity is presented. The a priori error estimates are analyzed under a low regularity condition, and the robustness wi
Externí odkaz:
http://arxiv.org/abs/2212.12916
The Steklov eigenvalue problem, first introduced over 125 years ago, has seen a surge of interest in the past few decades. This article is a tour of some of the recent developments linking the Steklov eigenvalues and eigenfunctions of compact Riemann
Externí odkaz:
http://arxiv.org/abs/2212.12528
Publikováno v:
In Computers and Mathematics with Applications 15 August 2023 144:90-99
Publikováno v:
Open Mathematics, Vol 20, Iss 1, Pp 666-681 (2022)
In this article, an effective finite element method based on dimension reduction scheme is proposed for a fourth-order Steklov eigenvalue problem in a circular domain. By using the Fourier basis function expansion and variable separation technique, t
Externí odkaz:
https://doaj.org/article/c578e040b95944758a09739e6e489be9