Zobrazeno 1 - 10
of 54
pro vyhledávání: '"static beam equation"'
The paper deals with a boundary value problem for the nonlinear integro-differential equation $u^{\prime\prime\prime\prime}-m\left(\int_0^l {u^\prime}^2dx\right)u^{\prime\prime}=f(x,u,u^\prime), \; m(z)\geq \alpha>0, \; 0\leq z <\infty$, modelling th
Externí odkaz:
http://arxiv.org/abs/1709.08687
Autor:
BOKOLO R. Gilles
Publikováno v:
Journal of Applied Computer Science & Mathematics, Vol 13, Iss 2, Pp 50-52 (2019)
In this paper we investigate the Hopf-Cole transformation to solve the Boussinesq-type equation. As a by-product, a linearization of the later will generate the static beam equation. Hence, we prove that soliton-type solutions profiles are preserved.
Externí odkaz:
https://doaj.org/article/fd7cd15a3fcd4143a2e6d65500a5ce10
Autor:
Berikelashvili, G.1,2 (AUTHOR), Papukashvili, A.3,4 (AUTHOR), Peradze, J.1,3 (AUTHOR) j_peradze@yahoo.com
Publikováno v:
Ukrainian Mathematical Journal. 2020, Vol. 72 Issue 8, p1185-1196. 12p.
Autor:
Peradze, Jemal
Publikováno v:
In Transactions of A. Razmadze Mathematical Institute September 2016 170(2):266-271
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
R. Bokolo
Publikováno v:
Journal of Applied Computer Science & Mathematics, Vol 13, Iss 2, Pp 50-52 (2019)
In this paper we investigate the Hopf-Cole transformation to solve the Boussinesq-type equation. As a by-product, a linearization of the later will generate the static beam equation. Hence, we prove that soliton-type solutions profiles are preserved.
Publikováno v:
Ukrains’kyi Matematychnyi Zhurnal. 72:1024-1033
UDC 519.6 The paper deals with a boundary-value problem for the nonlinear integro-differential equation modeling the static state of the Kirchhoff beam. The problem is reduced to a nonlinear integral equation, which is solved using the Picard iterati
Autor:
Jemal Peradze
Publikováno v:
Transactions of A. Razmadze Mathematical Institute, Vol 170, Iss 2, Pp 266-271 (2016)
The paper deals with a boundary value problem for the nonlinear integro-differential equation u ⁗ − m ( ∫ 0 l u ′ 2 d x ) u ″ = f ( x , u ) , m ( z ) ≥ α > 0 , 0 ≤ z ∞ , modelling the static state of the Kirchhoff beam. The problem i
The paper deals with a boundary value problem for the nonlinear integro-differential equation $u^{\prime\prime\prime\prime}-m\left(\int_0^l {u^\prime}^2dx\right)u^{\prime\prime}=f(x,u,u^\prime), \; m(z)\geq \alpha>0, \; 0\leq z
Comment: 11 pages
Comment: 11 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3375f0697d7611f185d1de24f82f5b06
http://arxiv.org/abs/1709.08687
http://arxiv.org/abs/1709.08687
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.