Zobrazeno 1 - 10
of 28
pro vyhledávání: '"space-time point process"'
Autor:
Brix, Anders, Diggle, Peter J.
Publikováno v:
Journal of the Royal Statistical Society. Series B (Statistical Methodology), 2001 Jan 01. 63(4), 823-841.
Externí odkaz:
https://www.jstor.org/stable/2680669
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of the American Statistical Association, 2008 Jun 01. 103(482), 614-624.
Externí odkaz:
https://www.jstor.org/stable/27640084
Autor:
Bordenave, C.
Publikováno v:
Advances in Applied Probability, 2006 Jun 01. 38(2), 487-504.
Externí odkaz:
https://www.jstor.org/stable/20443452
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dvořák, Jiří
Fitting of parametric models to spatial and space-time point patterns has been a very active research area in the last few years. Concerning clustered patterns, the Cox point process is the model of choice. To avoid the computationally demanding maxi
Externí odkaz:
http://www.nusl.cz/ntk/nusl-332328
Autor:
Greenspan, Ben
Publikováno v:
Greenspan, Ben. (2013). Survey of some recent advances in spatial-temporal point processes. UCLA: Statistics 0891. Retrieved from: http://www.escholarship.org/uc/item/85n5s3z2
Spatial-temporal point processes have been useful for applications in many fields, including the study of earthquakes, wildfires, and other natural disasters, as well as forests and other ecological data, neurological data, invasive species, epidemic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::73fc3e21c5687460d215c0ba53ff7d5c
http://n2t.net/ark:/13030/m5hm5dp2
http://n2t.net/ark:/13030/m5hm5dp2
Publikováno v:
Alejandro Veen; & Frederic Paik Schoenberg. (2011). Estimation of Space-time Branching Process Models in Seismology using an EM-type Algorithm. Department of Statistics, UCLA. UCLA: Department of Statistics, UCLA. Retrieved from: http://www.escholarship.org/uc/item/9bw93556
Veen, Alejandro; & Schoenberg, Frederic P.(2006). Estimation of Space-time Branching Process Models in Seismology using an EM-type Algorithm. Department of Statistics, UCLA. UCLA: Department of Statistics, UCLA. Retrieved from: http://www.escholarship.org/uc/item/7zm0v7tg
Veen, Alejandro; & Schoenberg, Frederic P.(2006). Estimation of Space-time Branching Process Models in Seismology using an EM-type Algorithm. Department of Statistics, UCLA. UCLA: Department of Statistics, UCLA. Retrieved from: http://www.escholarship.org/uc/item/7zm0v7tg
The estimation of branching point process models by maximum likelihood can be unstable and computationally intensive. We explore an alternative estimation method based on the Expectation-Maximization algorithm. The method involves viewing the estimat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b911ecc5bf329db4f9c16b4c745766cf
http://www.escholarship.org/uc/item/9bw93556
http://www.escholarship.org/uc/item/9bw93556
Autor:
Bordenave, Charles
Publikováno v:
[Research Report] RR-5305, INRIA. 2004, pp.22
In this report, we analyze a queueing system characterized by a space-time arrival process of customers served by a countable set of servers. Customers arrive at some points in space and the server stations have space-dependent processing rates. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c959ba3da9db460b53916abe0a258b3a
https://hal.inria.fr/inria-00070695
https://hal.inria.fr/inria-00070695