Zobrazeno 1 - 10
of 38
pro vyhledávání: '"shunkov group"'
Autor:
V.I. Senashov
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 48, Iss 1, Pp 145-151 (2024)
Infinite groups with finiteness conditions for an infinite system of subgroups are studied. Groups with a condition: the normalizer of any non-trivial finite subgroup is a layer-finite group or the normalizer of any non-trivial finite subgroup has a
Externí odkaz:
https://doaj.org/article/cb7c83c671204e9b8e6ac79b22ebe35a
Autor:
V.I. Senashov
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 37, Iss 1, Pp 118-132 (2021)
Layer-finite groups first appeared in the work by S.~N.~Chernikov (1945). Almost layer-finite groups are extensions of layer-finite groups by finite groups. The class of almost layer-finite groups is wider than the class of layer-finite groups; it in
Externí odkaz:
https://doaj.org/article/a71591df8388488bb769022204e743c6
Autor:
A.A. Shlepkin, I. V. Sabodakh
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 35, Iss 1, Pp 103-119 (2021)
One of the interesting classes of mixed groups ( i.e. groups that can contain both elements of finite order and elements of infinite order) is the class of Shunkov groups. The group $G$ is called Shunkov group if for any finite subgroup $H$ of $G$ in
Externí odkaz:
https://doaj.org/article/11ff10217eb545dc86b77e18d0c3b284
Autor:
A.A. Shlepkin
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 31, Iss 1, Pp 132-141 (2020)
An important concept in the theory of finite groups is the concept of a strongly embedded subgroup. The fundamental result on the structure of finite groups with a strongly embedded subgroup belongs to M. Suzuki. A complete classification of finite g
Externí odkaz:
https://doaj.org/article/fc54cb5da81e4d218dea4e036e0d4e31
Autor:
V.I. Senashov
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 32, Iss 1, Pp 101-117 (2020)
Layer-finite groups first appeared in the work by S.~N.~Chernikov (1945). Almost layer-finite groups are extensions of layer-finite groups by finite groups. The author develops the direction of characterizing the well studied classes of groups in oth
Externí odkaz:
https://doaj.org/article/299dfac931d24293b33362928a070d97
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
A.A. Shlepkin
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 24, Iss 1, Pp 51-67 (2018)
The structure of the group consisting of elements of finite order depends to a large extent on the structure of the finite subgroups of the group under consideration. One of the effective conditions for investigating an infinite group containing elem
Externí odkaz:
https://doaj.org/article/c2b90ca00bf545609d8bd0371b9995de
Autor:
A.A. Shlepkin
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 22, Iss 1, Pp 90-105 (2017)
The group $ G $ is saturated with groups from the set of groups if any a finite subgroup $ K $ of $ G $ is contained in a subgroup of $ G $, which is isomorphic to some group in $ \mathfrak{X} $. The set $ \mathfrak{X} $ from the above definition is
Externí odkaz:
https://doaj.org/article/8a059a385b35442bb14038b28af44a5b
Autor:
A. Shlepkin
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 20, Iss 1, Pp 96-108 (2017)
A group is said to be periodic, if any of its elements is of finite order. A Shunkov group is a group in which any pair of conjugate elements generates Finite subgroup with preservation of this property when passing to factor groups by finite Subgrou
Externí odkaz:
https://doaj.org/article/3cb8f6e43bb044adaadaffaeee03a5bf
Autor:
A. Shlepkin
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 16, Iss 1, Pp 102-116 (2016)
The property of group G to be saturated with given set of groups X is a natural generalization of locally-cover definition (in class of locally finite groups) on periodic groups. Locally-finite group, witch has a locally-cover contains from finite si
Externí odkaz:
https://doaj.org/article/35a8dcc0844344d0a77dceae6d171e05