Zobrazeno 1 - 10
of 546
pro vyhledávání: '"short geodesics"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Butt, Karen
The marked length spectrum (MLS) of a closed negatively curved manifold $(M, g)$ is known to determine the metric $g$ under various circumstances. We show that in these cases, (approximate) values of the MLS on a sufficiently large finite set approxi
Externí odkaz:
http://arxiv.org/abs/2210.15101
Autor:
Hide, Will, Thomas, Joe
We study the number of short geodesics and small eigenvalues on Weil-Petersson random genus zero hyperbolic surfaces with $n$ cusps in the regime $n\to\infty$. Inspired by work of Mirzakhani and Petri \cite{Mi.Pe19}, we show that the random multi-set
Externí odkaz:
http://arxiv.org/abs/2209.15568
Autor:
Bridgeman, Martin, Bromberg, Kenneth
We give $L^2$-bounds on the change in the complex projective structure on the boundary of conformally compact hyperbolic 3-manifold with incompressible boundary after drilling short geodesics. We show that the change is bounded by a universal constan
Externí odkaz:
http://arxiv.org/abs/2112.02724
Autor:
Mazet, Laurent, Rosenberg, Harold
Publikováno v:
In Advances in Mathematics 7 October 2020 372
Autor:
Sacchelli, Ludovic
We study the sub-Riemannian exponential for contact distributions on manifolds of dimension greater or equal to 5. We compute an approximation of the sub-Riemannian Hamiltonian flow and show that the conjugate time can have multiplicity 2 in this cas
Externí odkaz:
http://arxiv.org/abs/1812.11340
Autor:
Mazet, Laurent, Rosenberg, Harold
If $M$ is a finite volume complete hyperbolic $3$-manifold, the quantity $\mathcal A_1(M)$ is defined as the infimum of the areas of closed minimal surfaces in $M$. In this paper we study the continuity property of the functional $\mathcal A_1$ with
Externí odkaz:
http://arxiv.org/abs/1706.07742
Autor:
Millichap, Christian
Publikováno v:
Comm. in Analysis and Geometry Vol. 25, No. 3 (2017), 625-683
In this paper, we explicitly construct large classes of incommensurable hyperbolic knot complements with the same volume and the same initial (complex) length spectrum. Furthermore, we show that these knot complements are the only knot complements in
Externí odkaz:
http://arxiv.org/abs/1406.6033
A closed Teichmuller geodesic in the moduli space M_g of Riemann surfaces of genus g is called L-short if it has length at most L/g. We show that, for any L > 0, there exist e_2 > e_1 > 0, independent of g, so that the L-short geodesics in M_g all li
Externí odkaz:
http://arxiv.org/abs/1110.6434
Autor:
Breslin, William
Publikováno v:
Algebr. Geom. Topol. 11 (2011) 735-745
For each $g \ge 2$, we prove existence of a computable constant $\epsilon(g) > 0$ such that if $S$ is a strongly irreducible Heegaard surface of genus $g$ in a complete hyperbolic 3-manifold $M$ and $\gamma$ is a simple geodesic of length less than $
Externí odkaz:
http://arxiv.org/abs/0912.3496