Zobrazeno 1 - 5
of 5
pro vyhledávání: '"semt strength"'
Autor:
Kanwal Salma, Imtiaz Mariam, Idrees Nazeran, Iftikhar Zurdat, Shaikh Tahira Sumbal, Arshad Misbah, Irfan Rida
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1122-1134 (2020)
This study focuses on finding super edge-magic total (SEMT) labeling and deficiency of imbalanced fork and disjoint union of imbalanced fork with star, bistar and path; in addition, the SEMT strength for Imbalanced Fork is investigated.
Externí odkaz:
https://doaj.org/article/c5bbc879eb1a481ea7fe6a8ae0895f9f
Autor:
Kanwal Salma, Imtiaz Mariam, Iftikhar Zurdat, Ashraf Rehana, Arshad Misbah, Irfan Rida, Sumbal Tahira
Publikováno v:
Open Mathematics, Vol 17, Iss 1, Pp 527-543 (2019)
A graph ℘ is said to be edge-magic total (EMT if there is a bijection Υ : V(℘) ∪ E(℘) → {1, 2, …, |V(℘) ∪ E(℘)|} s.t., Υ(υ) + Υ(υν) + Υ(ν) is a constant for every edge υν ∈ E(℘). An EMT graph ℘ will be called strong
Externí odkaz:
https://doaj.org/article/af5b98fac4d349638dd75b658fd860f9
Publikováno v:
Open Mathematics, Vol 16, Iss 1, Pp 1313-1325 (2018)
A super edge-magic total (SEMT) labeling of a graph ℘(V, E) is a one-one map ϒ from V(℘)∪E(℘) onto {1, 2,…,|V (℘)∪E(℘) |} such that ∃ a constant “a” satisfying ϒ(υ) + ϒ(υν) + ϒ(ν) = a, for each edge υν ∈E(℘), moreo
Externí odkaz:
https://doaj.org/article/b5ffa21f47f44995a55b0c0680e23252
Autor:
Zurdat Iftikhar, Tahira Sumbal Shaikh, Misbah Arshad, Nazeran Idrees, Mariam Imtiaz, Salma Kanwal, Rida Irfan
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1122-1134 (2020)
This study focuses on finding super edge-magic total (SEMT) labeling and deficiency of imbalanced fork and disjoint union of imbalanced fork with star, bistar and path; in addition, the SEMT strength for Imbalanced Fork is investigated.
Autor:
Rida Irfan, Zurdat Iftikhar, Salma Kanwal, Tahira Sumbal, Misbah Arshad, Rehana Ashraf, Mariam Imtiaz
Publikováno v:
Open Mathematics, Vol 17, Iss 1, Pp 527-543 (2019)
A graph ℘ is said to be edge-magic total (EMT if there is a bijection Υ : V(℘) ∪ E(℘) → {1, 2, …, |V(℘) ∪ E(℘)|} s.t., Υ(υ) + Υ(υν) + Υ(ν) is a constant for every edge υν ∈ E(℘). An EMT graph ℘ will be called strong