Zobrazeno 1 - 10
of 234
pro vyhledávání: '"semisimple algebraic group"'
Autor:
Nham V. Ngo
Publikováno v:
Algebras and Representation Theory. 26:159-167
Let G be a semisimple algebraic group defined over an algebraically closed field. We provide some criteria for normality and rational singularities of G-saturation under certain circumstances. Our results are applied to determine when the commuting v
Autor:
Nicolas Dupré
Publikováno v:
p-Adic Numbers, Ultrametric Analysis and Applications. 13:44-82
In this two-part paper, we introduce a $$p$$ -adic analytic analogue of Backelin and Kremnizer’s construction of the quantum flag variety of a semisimple algebraic group, when $$q$$ is not a root of unity and $$\vert q-1\vert
Autor:
Eoin Mackall, Nikita A. Karpenko
Publikováno v:
Ann. K-Theory 4, no. 2 (2019), 317-344
For [math] a product of Severi–Brauer varieties, we conjecture that if the Chow ring of [math] is generated by Chern classes, then the canonical epimorphism from the Chow ring of [math] to the graded ring associated to the coniveau filtration of th
Publikováno v:
Transformation Groups
Transformation Groups, Springer Verlag, 2019, 24, pp.597-657
Transformation Groups, 2019, 24, pp.597-657
Transformation Groups, Springer Verlag, 2019, 24, pp.597-657
Transformation Groups, 2019, 24, pp.597-657
Let $G$ be a simply-connected semisimple algebraic group over an algebraically closed field of characteristic $p$, assumed to be larger than the Coxeter number. The "support variety" of a $G$-module $M$ is a certain closed subvariety of the nilpotent
Autor:
Alexey Petukhov, Roman Avdeev
Publikováno v:
Algebras and Representation Theory. 23:541-581
Let $G$ be a connected semisimple algebraic group and let $H \subset G$ be a connected reductive subgroup. Given a flag variety $X$ of $G$, a result of Vinberg and Kimelfeld asserts that $H$ acts spherically on $X$ if and only if for every irreducibl
Autor:
Hankyung Ko
Publikováno v:
Journal of Algebra. 520:400-418
This paper studies the “reduction mod p” method, which constructs large classes of representations for a semisimple algebraic group G from representations for the corresponding Lusztig quantum group U ζ at a p r -th root of unity. The G-modules
Autor:
Humphreys, J. E.
Publikováno v:
Proceedings of the American Mathematical Society, 1978 Feb 01. 68(2), 143-146.
Externí odkaz:
https://www.jstor.org/stable/2041758
Autor:
Leyu Han
Publikováno v:
Journal of Algebra and Its Applications. 21
Let $\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus\mathfrak{g}_{\bar{1}}$ be a finite-dimensional simple Lie superalgebra of type $D(2,1;\alpha)$, $G(3)$ or $F(4)$ over $\mathbb{C}$. Let $G$ be the simply connected semisimple algebraic group over $\mathb
Autor:
Satoshi Wakatsuki, Pablo Ramacher
Publikováno v:
Mathematische Zeitschrift.
Let H be a semisimple algebraic group, K a maximal compact subgroup of $$G:=H({{\mathbb {R}}})$$ G : = H ( R ) , and $$\Gamma \subset H({{\mathbb {Q}}})$$ Γ ⊂ H ( Q ) a congruence arithmetic subgroup. In this paper, we generalize existing subconve
Autor:
Oksana Yakimova, Dmitri I. Panyushev
Publikováno v:
Journal of the Australian Mathematical Society. 106:104-126
Let $G$ be a semisimple algebraic group with Lie algebra $\mathfrak g$. For a nilpotent $G$-orbit $\mathcal O\subset\mathfrak g$, let $d_\mathcal O$ denote the maximal dimension of a subspace $V\subset \mathfrak g$ that is contained in the closure of